Author: Nolden, F.
Paper Title Page
THPME101 Considerations for a Cavity-Based Position-Sensitive Heavy Ion Detector for the CR at FAIR 3477
 
  • X. Chen, P. Hülsmann, Yu.A. Litvinov, F. Nolden, M.S. Sanjari, M. Steck, T. Stöhlker
    GSI, Darmstadt, Germany
  • X. Chen
    Heidelberg University, Heidelberg, Germany
  • Yu.A. Litvinov
    MPI-K, Heidelberg, Germany
  • J. Piotrowski
    AGH University of Science and Technology, Kraków, Poland
  • T. Stöhlker
    HIJ, Jena, Germany
 
  Funding: Work funded by the European Commission (PITN-GA-2011-289485), the Alliance Program of the Helmholtz Association (HA216/EMMI), the Helmholtz-CAS Joint Research Group (HCJRG-108), the BMBF (05E12CD2).
The Facility for Antiproton and Ion Research (FAIR) is a complex yet ongoing project which will allow for a broad range of experimental physics programs as well as a variety of material and medical applications. Being a heavy ion storage ring at FAIR, the Collector Ring (CR) is perfectly suitable for scientific investigations on fundamental properties – such as masses and lifetimes – of short-lived radioactive nuclei when it operates in isochronous mode. To fulfill stringent experimental requirements, a compatible heavy ion detector sensitive to beam intensities and positions is highly demanded. In this paper we present a conceptual design of cavity-based Schottky noise pickup to achieve non-destructive detections of stored particles. Computer-aided simulations follow immediately to justify the feasibility of such a design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)