Author: Nagai, R.
Paper Title Page
MOPRO110 Present Status of the Compact ERL at KEK 353
 
  • N. Nakamura, M. Adachi, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sakanaka, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  The Compact Energy Recovery Linac (cERL) project is ongoing at KEK in order to demonstrate excellent ERL performance as a future light source. The cERL injector was already constructed with its diagnostic beamline and successfully commissioned from April to June in 2013. In the next step, the cERL recirculation loop with a main superconducting linac and merger and dump sections has been constructed and its commissioning is scheduled to start in December 2013. Significant progress is expected by the IPAC14 conference date. In this presentation, we will describe the present status of the cERL including future developments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO003 Construction of a Laser Compton Scattered Photon Source at cERL 1940
 
  • R. Nagai, R. Hajima, M. Mori, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • T. Akagi, Y. Honda, A. Kosuge, J. Urakawa
    KEK, Ibaraki, Japan
 
  A nondestructive assay system of isotopes by quasi-monochromatic gamma-rays and nuclear resonance fluorescence is under development in JAEA. The quasi-monochromatic gamma-rays are generated by laser Compton scattering (LCS) based on energy-recovery linac accelerator and laser technologies. In order to demonstrate the accelerator and laser performance required for the gamma-ray source, an LCS experiment is planned at Compact ERL (cERL) at KEK. A mode-locked fiber laser, laser enhancement cavity, beamline, and experimental hatch are under construction for the LCS experiment. Up-to-date construction status is presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO005 Development of Superconducting Spoke Cavity for Laser Compton Scattered Photon Sources 1946
 
  • M. Sawamura, R. Hajima, R. Nagai
    JAEA, Ibaraki-ken, Japan
  • H. Fujisawa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Kubo
    KEK, Ibaraki, Japan
 
  Funding: This work is supported by Photon and Quantum Basic Research Coordinated Development Program.
We have launched a 5-year research program to develop superconducting spoke cavity for laser Compton scattered (LCS) photon sources. For realizing a wide use of LCS X-ray and gamma-ray sources in academic and industrial applications, we adopt 325-MHz superconducting spoke cavity to electron beam drivers for the LCS sources. The spoke cavity, originally invented for ion and proton acceleration, can be used for electron accelerators, in which we can make best use of features of spoke cavity: relative compactness in comparison with a TM cavity of the same frequency, robustness with respect to manufacturing inaccuracy due to its strong cell-to-cell coupling, couplers on outer conductor for the better packing in a linac, and so on. In this paper, we present our research plan and results of cavity shape optimization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO056 Development of an Optical Resonant Cavity for the LCS Experiment at cERL 2072
 
  • T. Akagi, Y. Honda, A. Kosuge, J. Urakawa
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, R. Nagai, T. Shizuma
    JAEA, Ibaraki-ken, Japan
 
  A nondestructive assay system of isotopes by quasi-monochromatic gamma-rays by laser Compton scattering (LCS) is under development. In order to demonstrate the accelerator and laser performance required for the gamma-ray source, an LCS experiment is planned at Compact ERL (cERL) at KEK. An optical resonant cavity is under construction for the LCS experiment. The new optical cavity is designed by combination of two bow-tie cavities to achieve fast optical polarization switching. The performance of the optical cavity is presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI030 Multipactor Simulation on Superconducting Spoke Cavity for Laser Compton Scattered Photon Sources 2543
 
  • Y. Iwashita, H. Fujisawa, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Hajima, R. Nagai, M. Sawamura
    JAEA, Ibaraki-ken, Japan
  • T. Kubo
    KEK, Ibaraki, Japan
 
  Funding: This work is supported by Photon and Quantum Basic Research Coordinated Development Program.
Superconducting spoke cavity for laser Compton scattered (LCS) photon sources is under development. The operating frequency is 325-MHz to accelerate electron beam for the LCS sources, where the size of the spoke cavity is less than a elliptical cavities with the same frequency. Because of the complicated shape of the cavity, it may be suffered from a strong multipactor effect. The recent results on the multipactor analysis will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO093 Low Emittance Electron Beam Transportation in Compact ERL Injector 3104
 
  • T. Miyajima, K. Harada, Y. Honda, T. Kume, S. Nagahashi, N. Nakamura, T. Obina, S. Sakanaka, M. Shimada, R. Takai, T. Uchiyama, A. Ueda, M. Yamamoto
    KEK, Ibaraki, Japan
  • R. Hajima, R. Nagai, N. Nishimori
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    Kyungpook National University, Daegu, Republic of Korea
 
  For future light source based on Energy Recovery Linac (ERL), an injector, which consists of a photocathode DC gun and superconducting RF cavities, is a key part to generate a low emittance, short pulse and high bunch charge electron beam. In compact ERL (cERL) which is a test accelerator to develop key technologies for ERL, the generation of low emittance electron beam with 0.1 mm mrad normalized emittance and 390 keV beam energy from the photocathode DC gun, and the acceleration to 5.6 MeV by superconducting cavity, were demonstrated in the first beam commissioning. To keep the high quality in the beam transportation, understanding the beam optics, which is affected by not only the focusing effects due to the gun, solenoid magnets and RF cavities but also space charge effect, is required. In this presentation, we will show that how to measure and correct the focusing effect by experimental method. Using this method, we succeeded in correcting the analytical model to give the good agreement with the measured gun focusing for low charge beam. And, we will show the space charge effect for high bunch charge beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)