Author: Nadolski, L.S.
Paper Title Page
MOPRO051 SOLEIL Operation and On-going Projects 200
 
  • L.S. Nadolski, C. Benabderrahmane, P. Betinelli-Deck, F. Bouvet, P. Brunelle, A. Buteau, L. Cassinari, M.-E. Couprie, X. Delétoille, C. Herbeaux, N. Hubert, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, J.L. Marlats, A. Nadji, R. Nagaoka, P. Prigent, J.P. Ricaud, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The 2.75 GeV synchrotron light source SOLEIL delivers photons to 27 beamlines; 2 new ones are under construction together with the FEMTOSLICING project of which commissioning started in January 2014. Five filling patterns are available for the users in Top-up injection mode. The storage ring is running with an upgraded optics less sensitive to insertion device (ID) configurations and giving both better beam lifetime and injection efficiency. The beam position stability remains excellent with a focus on electron vertical beam-size stability for the new very long beamlines. A gating system during Top-up injection improves significantly the quality of the spectrum on an infrared beamline. Several heavy actions of maintenance and upgrades on crucial subsystem equipment are underway. Others accelerator projects are going on such as the design and construction of new IDs, new Multipole Injection Kicker, radiation damage studies as well as R&D on solid-state amplifiers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO053 Study of Upgrade Scenarios for the SOLEIL Storage Ring 203
 
  • R. Nagaoka, P. Brunelle, X.N. Gavaldà, A. Loulergue, A. Nadji, L.S. Nadolski, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Within the scope of a future major upgrade of the SOLEIL storage ring, presently having the energy of 2.75 GeV, the circumference of 354 m and the horizontal emittance of 3.7 nm.rad, towards a Diffraction Limited Storage Ring (DLSR), the present paper presents and discusses the outcomes of a series of studies launched to explore different possible scenarios for the magnet lattice arrangement, under the constraint of making the upgrade in the same existing machine tunnel. Two scenarios were presented earlier in this context, which both preserved all the existing free straight sections for insertions, though the bending magnet positions were not strictly conserved. The purpose of the extended studies is to explore, in particular, the range of horizontal emittance that can be reached by hypothetically removing some of the existing geometric constraints, such as suppressing or shortening partially the straight sections. The emittance range is equally studied by fulfilling rigorously all constraints. The dependence of the nonlinear properties of the magnet lattice on the linear optics is simultaneously investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO054 Commissioning progress of the Femto-slicing Project at SOLEIL 206
 
  • M. Labat, H.B. Abualrob, P. Betinelli-Deck, A. Buteau, N. Béchu, L. Cassinari, M.-E. Couprie, F. Dohou, C. Herbeaux, Ph. Hollander, J.-F. Lamarre, C. Laulhé, A. Lestrade, J. Lüning, O. Marcouillé, J.L. Marlats, T. Moreno, P. Morin, A. Nadji, L.S. Nadolski, D. Pédeau, P. Prigent, S. Ravy, J.P. Ricaud, M. Ros, P. Roy, M.G. Silly, F. Sirotti, K. Tavakoli, M.-A. Tordeux, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
 
  The femtoslicing project at SOLEIL is currently under commissioning. It will enable to serve several beamlines with 100 fs FWHM long pulses of soft and hard X-rays with reasonable flux and with a 1 kHz repetition rate. It is based on the interaction of a femtosecond Ti:Sa laser with electrons circulating in the magnetic field of a modulator wiggler, that provides the electron beam energy modulation on the length scale of the laser pulse. The optimization of the interaction is performed using two dedicated diagnostics stations. The first one, operating in the Infra-Red (IR) is installed in the tunnel and allows the adjustment of the temporal, spectral and spatial overlap between the laser and the electron beam. The second one, located in the IR-THz AILES beamline, measures the intensity of the terahertz (THz) radiation emitted by the local dip structure produced in the core electron beam after interaction. This second setup provides refined optimization of the interaction. This paper describes the layout of these diagnostics and gives first results and characterization of the slicing experiment at SOLEIL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME007 Multi-objective Optimization of the Linear and Non-linear Beam Dynamics of Synchrotron SOLEIL 388
 
  • X.N. Gavaldà, A. Díaz Ortiz, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
 
  One of the most important challenges for the actual and new third generation of synchrotron light sources is to optimize the linear and the non-linear beam dynamics of these strong focusing lattices. The optimization of a storage ring lattice is a multi-objective problem that involves a high number of constraints in a multi-dimensional parameter space. In this paper we used Multi-Objective Genetic Algorithm (MOGA) and the tracking code ELEGANT to optimize the linear and non-linear beam dynamics of the SOLEIL synchrotron light source. The objectives of our optimization are the dynamical aperture and the momentum aperture which are strongly correlated to the injection efficiency and the Touschek lifetime, respectively. This paper will discuss the deployment of this computational approach using the SOLEIL computer cluster. The first results will also be presented and we will discuss possible improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI004 Operational Experience and Upgrades of the SOLEIL Storage Ring RF System 2480
 
  • P. Marchand, J.P. Baete, R.C. Cuoq, H.D. Dias, M. Diop, J.L. Labelle, R. Lopes, M. Louvet, C.M. Monnot, L.S. Nadolski, S. Petit, F. Ribeiro, T. Ruan, R. Sreedharan, K. Tavakoli
    SOLEIL, Gif-sur-Yvette, France
 
  In the SOLEIL storage ring, two cryomodules provide to the electron beam an accelerating voltage of 3-4 MV and a power of 575 kW at 352 MHz. Each cryomodule contains a pair of superconducting cavities, cooled with liquid Helium at 4.5 K, which is supplied by a single 350 W cryogenic plant. The RF power is provided by four solid state amplifiers, each delivering up to 180 kW. The parasitic impedances of the high order modes (HOM) are strongly mitigated by means of four coaxial couplers, located on the central pipe connecting the two cavities. Eight years of operational experience with this system, as well as its upgrades, are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO100 Progresses of the ThomX High Level Control Applications based on MATLAB Middle Layer 3125
 
  • J.F. Zhang, C. Bruni, I. Chaikovska, S. Chancé, T. Demma, A. Variola
    LAL, Orsay, France
  • A. Loulergue, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: Work is supported by the French "Agence Nationale de la Recherche" as part of the program "investing in the future" under reference ANR-10-EQPX-51, and also by grants from Region Ile-de-France.
The Compton back-scattering based compact X-ray source ThomX is under construction in LAL/IN2P3, CNRS, France. This machine will serve as a demonstrator in producing up to 1013 ph/s for imaging and cultural heritage recovery. The high level applications of the ThomX machine for the future commissioning and operations are being developed using Matlab Middle Layer (MML) which is broadly used in the modern synchrotron light sources. In this article, we report the nearest progresses of high level applications of the ThomX machine, and present the nonlinear response matrices to correct the tune, chromaticity and orbit, and the algorithm to correct the orbit in the transfer line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME083 BPM Data Correction at SOLEIL 3430
 
  • N. Hubert, B. Béranger, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
 
  In a synchrotron light source like SOLEIL, Beam Position Monitors (BPM) are optimized to have the highest sensitivity for an electron beam passing nearby their mechanical center. Nevertheless, this optimization is done to the detriment of the response linearity when the beam is off-centered for dedicated machine physic studies. To correct for the geometric non-linearity of the BPM, we have applied an algorithm using boundary element method. Moreover the BPM electronics is able to provide position data at a turn-by-turn rate. Unfortunately the filtering process in this electronics mixes the information from one turn to the neighboring turns. An additional demixing algorithm has been set-up to correct for this artefact. The paper reports on performance and limitations of those two algorithms that are used at SOLEIL to correct the BPM data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)