Author: Molson, J.
Paper Title Page
MOPRO039 Integrated Simulation Tools for Collimation Cleaning in HL-LHC 160
 
  • R. Bruce, C. Bracco, F. Cerutti, A. Ferrari, A. Lechner, A. Marsili, A. Mereghetti, D. Mirarchi, P.G. Ortega, D. Pastor Sinuela, S. Redaelli, A. Rossi, B. Salvachua, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Appleby, J. Molson, M. Serluca
    UMAN, Manchester, United Kingdom
  • R.W. Aßmann
    DESY, Hamburg, Germany
  • R.J. Barlow, H. Rafique, A.M. Toader
    University of Huddersfield, Huddersfield, United Kingdom
  • S.M. Gibson, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
  • C. Tambasco
    University of Rome La Sapienza, Rome, Italy
 
  The Large Hadron Collider is designed to accommodate an unprecedented stored beam energy of 362~MJ in the nominal configuration and about the double in the high-luminosity upgrade HL-LHC that is presently under study. This requires an efficient collimation system to protect the superconducting magnets from quenches. During the design, it is therefore very important to accurately predict the expected beam loss distributions and cleaning efficiency. For this purpose, there are several ongoing efforts in improving the existing simulation tools or developing new ones. This paper gives a brief overview and status of the different available codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO046 Comparison of MERLIN/SixTrack for LHC Collimation Studies 185
 
  • M. Serluca, R. Appleby, J. Molson
    UMAN, Manchester, United Kingdom
  • R.J. Barlow, H. Rafique, A.M. Toader
    University of Huddersfield, Huddersfield, United Kingdom
  • R. Bruce, A. Marsili, S. Redaelli, B. Salvachua
    CERN, Geneva, Switzerland
  • C. Tambasco
    University of Rome La Sapienza, Rome, Italy
 
  Simulations of the LHC collimation system have been carried out in previous years with the well known SixTrack code with collimation features. MERLIN is a C++ accelerator physics library that has been extended to perform collimation studies. The main features of the code are: its modular nature, allowing the user to easily implement new physics processes such as resistive wakefields and synchrotron radiation, improved scattering routines and the MPI protocol for parallel execution. MERLIN has been configured to use the same scattering routines as SixTrack in order to benchmark the code for the LHC collimation system. In this paper we present a detailed comparison between MERLIN and SixTrack for optics and cleaning inefficiency calculation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI077 Hi-Lumi LHC Collimation Studies with MERLIN Code 784
 
  • M. Serluca, R. Appleby, J. Molson
    UMAN, Manchester, United Kingdom
  • R.J. Barlow, H. Rafique, A.M. Toader
    University of Huddersfield, Huddersfield, United Kingdom
 
  The collimation system is key to the successful operation of the LHC. Measurements and simulations of the previous run at 4 TeV have shown that the system is ready for the next step, running at 7 TeV, but at the same time some sensitive cleaning locations have been identified. In particular the dispersion suppressors downstream of the betatron cleaning region in IR7 are sensitive to single diffractive scattered protons from the collimator jaws. These particles can lead to magnet quenching. The MERLIN C++ library has been developed to exploit the functionality of an object oriented code, with improved collective effects and scattering routines. New single diffractive and elastic scattering routines, based on a fit of existing experimental data with the Regge theory of soft interactions of high energy scattering, is implemented in MERLIN. In this paper we present the impact of the new single diffractive scattering physics on the cleaning inefficiency of the LHC collimation system for the Achromatic Telescope Squeezing (ATS) PreSqueeze optics scheme, for the HL-LHC project. The results are compared with the same loss map calculated using a SixTrack+K2 like scattering routine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)