Author: Miyajima, T.
Paper Title Page
MOPRO084 Recent Development and Operational Status of PF-Ring and PF-AR 286
 
  • T. Honda, M. Adachi, S. Asaoka, K. Haga, K. Harada, Y. Honda, M. Izawa, T. Kageyama, Y. Kamiya, Y. Kobayashi, K. Marutsuka, T. Miyajima, H. Miyauchi, S. Nagahashi, N. Nakamura, T. Nogami, T. Obina, M. Ono, T. Ozaki, H. Sagehashi, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, K. Shinoe, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Ma. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki, Japan
 
  Update of the first-generation undulators installed in 1980s is pushed forward at PF-Ring, a 2.5-GeV SR source of KEK, taking advantage of the expanded straight sections reconstructed in 2005. New undulators have been designed as elliptically polarizing undulators each has 6 magnetic arrays to obtain various polarization states, not only circular polarization but also linear (horizontal and vertical) polarization. Three undulators will be installed in FY2013 and FY2014 for BL02, BL13 and BL28. For BL02, the longest straight section of about 9 m, the new undulator will be installed in tandem with the existing planar undulator, in order to cover the wide photon energy range from 15 eV to 2 keV. At PF-AR, a 6.5-GeV SR source, a new direct beam transport (BT) line from the injector LINAC is under construction. Super KEKB which shares the injector LINAC with PF-Ring and PF-AR will be commissioned at the end of FY2014. The full-energy continuous injection of PF-AR will be available as a simultaneous injection with the 7-GeV HER, the 4-GeV LER and PF-Ring not so later than the commissioning of Super KEKB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO110 Present Status of the Compact ERL at KEK 353
 
  • N. Nakamura, M. Adachi, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sakanaka, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  The Compact Energy Recovery Linac (cERL) project is ongoing at KEK in order to demonstrate excellent ERL performance as a future light source. The cERL injector was already constructed with its diagnostic beamline and successfully commissioned from April to June in 2013. In the next step, the cERL recirculation loop with a main superconducting linac and merger and dump sections has been constructed and its commissioning is scheduled to start in December 2013. Significant progress is expected by the IPAC14 conference date. In this presentation, we will describe the present status of the cERL including future developments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO093 Low Emittance Electron Beam Transportation in Compact ERL Injector 3104
 
  • T. Miyajima, K. Harada, Y. Honda, T. Kume, S. Nagahashi, N. Nakamura, T. Obina, S. Sakanaka, M. Shimada, R. Takai, T. Uchiyama, A. Ueda, M. Yamamoto
    KEK, Ibaraki, Japan
  • R. Hajima, R. Nagai, N. Nishimori
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    Kyungpook National University, Daegu, Republic of Korea
 
  For future light source based on Energy Recovery Linac (ERL), an injector, which consists of a photocathode DC gun and superconducting RF cavities, is a key part to generate a low emittance, short pulse and high bunch charge electron beam. In compact ERL (cERL) which is a test accelerator to develop key technologies for ERL, the generation of low emittance electron beam with 0.1 mm mrad normalized emittance and 390 keV beam energy from the photocathode DC gun, and the acceleration to 5.6 MeV by superconducting cavity, were demonstrated in the first beam commissioning. To keep the high quality in the beam transportation, understanding the beam optics, which is affected by not only the focusing effects due to the gun, solenoid magnets and RF cavities but also space charge effect, is required. In this presentation, we will show that how to measure and correct the focusing effect by experimental method. Using this method, we succeeded in correcting the analytical model to give the good agreement with the measured gun focusing for low charge beam. And, we will show the space charge effect for high bunch charge beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME146 Bunch Length Measurement by Using a 2-Cell Superconducting RF Cavity in cERL Injector at KEK 3596
 
  • J.G. Hwang, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The development of future light source and linear colliders require high quality electron beams with short bunch length. The measurement of the bunch length is important technique for future electron machine. In general, the bunch length was measured by using deflecting cavity which has the time dependent transverse electromagnetic field. However, the transverse electric field of 2-cell superconducting RF (SRF) cavity can also provide the correlation between the bunch length and beam size as like the role of the deflecting cavity in bunch length measurement. The deflection strength was calibrated by changing the RF phase and the beam offset because the strength of transverse electric field of RF cavity depends on the phase of RF field and the beam offset in the cavity. We will present new way to measure the bunch length by using 2-cell SRF cavity, which has the acceleration field of 15 MV/m, and the measured result with the bunch length of 3 ps in cERL injector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI045 Development of a 1.3-GHz Buncher Cavity for the Compact ERL 3866
 
  • T. Takahashi, Y. Honda, T. Miura, T. Miyajima, H. Sakai, S. Sakanaka, K. Shinoe, T. Uchiyama, K. Umemori, M. Yamamoto
    KEK, Ibaraki, Japan
 
  In a high-brightness injector of the Compact ERL (cERL), a 1.3-GHz buncher cavity is used to compress the electron bunches which are produced at a 500-kV photocathode DC electron gun. An rf voltage required is about 130 kV. To elongate the lifetime of the photocathode of the DC gun which is located beside the buncher cavity, an extremely-low pressure of about 10-9 Pa is required in the buncher cavity under operating conditions. In order to achieve such low pressures, we have developed a normal-conducting cavity which included several measures to reduce the outgas from the cavity components, together with careful rf designs to avoid any problems due to multipactor discharges or to other problems. With the developed cavity, we achieved a vacuum pressure of about 2·10-9 Pa under rf operations at an rf voltage of about 100 kV. The buncher cavity was installed in the cERL, and it worked very well; we could demonstrate to compress the bunch length from 10 ps (FWHM) to 0.5 ps (rms) using the buncher cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)