Author: Mezentsev, N.A.
Paper Title Page
WEPRI085 The Elettra 3.5 T Superconducting Wiggler Refurbishment 2687
 
  • D. Zangrando, R. Bracco, D. Castronovo, M. Cautero, E. Karantzoulis, S. Krecic, G.L. Loda, D. Millo, L. Pivetta, G. Scalamera, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • S.V. Khrushchev, N.A. Mezentsev, V.A. Shkaruba, V.M. Syrovatin, O.A. Tarasenko, V.M. Tsukanov, A.A. Volkov
    BINP SB RAS, Novosibirsk, Russia
 
  A 3.5 Tesla 64 mm period superconducting wiggler (SCW) was constructed by the Russian Budker Institute of Novosibirsk (BINP) and installed in the Elettra storage ring as a photon source for the second X-ray diffraction beamline in November 2002, but never used due to the lack of the funding required for the beamline construction. About three years ago, the beamline construction was finally funded together with the refurbishment of the SCW. This upgrade, that was necessary in order to make the SCW operations compatible with the top up mode of the storage ring aimed in a drastic reduction of the liquid helium consumption by means of replacing the cryostat with a new version. At the same time the upgrade aimed as well to improve the reliability of the cryostat, to update the control system and to verify the magnetic field performance after a very long time of inactivity. In this paper we present and discuss the performances of the SCW following its refurbishment carried out by BINP team and its re-commissioning in the Elettra storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI091 Superconducting Multipole Wigglers: State of the Art 4103
 
  • N.A. Mezentsev, S.V. Khrushchev, V.K. Lev, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov
    BINP SB RAS, Novosibirsk, Russia
 
  Superconducting multipole wigglers installed on synchrotron radiation sources are the powerful tools for researches in various areas of science and technics. SuperConducting Multipole Wigglers (SCMWs) represent sign-alternating sequence of magnets with lateral magnetic field. Relativistic electrons, passing through such set of magnetic elements, create radiation with properties of synchrotron radiations depending on maximum field its period and poles number. The first superconducting wiggler has been made and installed on the VEPP-3 electron storage ring as generator of synchrotron radiation in 1979. Nowadays tens of wigglers are successfully working in the various synchrotron radiation centers and more than 10 of them were developed and made in Budker INP. These wigglers may be divided into 3 groups: 1- Short period 3-3.5 cm with field ~2-2.5 Tesla 2- Medium period 4.8-6 cm with field ~ 3.5-4.5 Tesla 3- Long period 14.5-20 cm with field 7-7.5Tesla. The description of magnetic properties of the wigglers, parameters of both cryogenic and vacuum systems and their technical decisions are presenteded in the report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)