Author: Meusel, O.
Paper Title Page
MOPRI088 Beam Transport Experiments Using Gabor Lenses 818
 
  • K. Schulte, M. Droba, S. Klaproth, O. Meusel, D. Noll, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  A prototype Gabor lens has successfully been tested at the GSI High Current Test Injector (HOSTI)*. The experiments comprised the investigation of an emittance dominated and a space-charge dominated beam transport. In particular, the high-current measurements represent a necessary step towards evaluating the focusing performance of the lens and to gain experience in a real accelerator environment. Besides the evaluation of the technical feasibility, the behavior of the electron cloud was characterized by the parameter analysis of the confined non-neutral plasma during beam transport measurements as well as subsequently performed diagnostic experiments. This contribution will present experimental results as well as numerical studies on an improved Gabor lens design for the possible application at the GSI High Current Injector (HSI) in the context of an upgrade program for FAIR**.
*K. Schulte et al., Proc. of IPAC'13, Shanghai, China, 2013, THPWO021
**L. Dahl, Proc. of HIAT’09, Venice, Italy, 2009, FR-01
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO045 Simulation Studies on Beam Injection into a Figure-8 Type Storage Ring 1126
 
  • M. Droba, A. Ates, O. Meusel, H. Niebuhr, D. Noll, U. Ratzinger, J.F. Wagner
    IAP, Frankfurt am Main, Germany
 
  The proposed figure-8 storage ring at Frankfurt University [1, 2] is based on longitudinal guiding magnetic fields and will have special features with respect to the beam dynamics. A crucial part of the ring is the injection section, where the low energy beams have to cross an area of steeply rising field – up to B = 6 T into the main ring field. An optimized magnetic channel is designed to bring the injected beam close enough to the magnetic ring flux. An ExB kicker is needed to move the injected beam from the injection channel to the main magnetic field flux allowing multi turn injection. Simulation studies concentrate on this part and will be presented, results will be discussed. A comparison with simulations for prepared scaled down experiments with existing room temperature toroids will be done.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO103 A Control System for the FRANZ Accelerator 3134
 
  • S.M. Alzubaidi, O. Meusel, U. Ratzinger, K. Volk, C. Wagner
    IAP, Frankfurt am Main, Germany
  • H. Dinter
    DESY, Hamburg, Germany
 
  The Frankfurt Neutron Source at the Stern- Gerlach Zentrum (FRANZ) is a multi-purpose facility for experiments related to accelerator development and nuclear astrophysics. A 200 mA proton beam will produce a neutron flux by use of the reaction 7Li(p, n)7Be. To study the reliability and performance of the accelerator an effective and powerful control system will be needed. A small ion source was used for the first performance test of the control system. The design of the control loop algorithm for the High Current proton source will be discussed. Physical data routinely taken by the control system are compared with manual measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME014 Beam Dynamics in the LEBT for FRANZ 3241
 
  • P.P. Schneider, H. Dinter, M. Droba, O. Meusel, D. Noll, T. Nowottnick, O. Payir, H. Podlech, A. Schempp, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  The two Low Energy Beam Transport (LEBT) sections of the accelerator-driven neutron source FRANZ* consist of four solenoids. The first section with two solenoids will match the 120 keV proton beam into a chopper system**. Downstream from the chopper system a second section with two more solenoids will match the beam into the acceptance of the following RFQ. The accelerator will be operated using either a 2 mA dc beam or a pulsed beam with intensities from 50 mA to 200 mA at 250 kHz repetition rate. The high intensity of these ion beams requires the consideration of space-charge effects. Particle simulations with varying parameter sets have been performed in order to determine the settings providing best transmission and beam quality. Loss profiles along the transport channel were computed to identify hotspots. Simulation results for best transmission at lowest emittance growth will be presented.
* O. Meusel et al., Proc. of LINAC12, Tel-Aviv, Israel, MO3A03
** C. Wiesner et al., Proc. of IPAC2012, New Orleans, LA., USA, THPPP074
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME015 Experimental Performance of an E×B Chopper System 3244
SUSPSNE042   use link to see paper's listing under its alternate paper code  
 
  • C. Wiesner, H. Dinter, M. Droba, O. Meusel, D. Noll, T. Nowottnick, O. Payir, U. Ratzinger, P.P. Schneider
    IAP, Frankfurt am Main, Germany
 
  Beam operation of an E×B chopper system has started in the Low-Energy Beam Transport (LEBT) section of the accelerator-driven neutron source FRANZ*. The chopper is designed for low-energy high-perveance beams and high repetition rates. It combines a static magnetic deflection field with a pulsed electric compensation field in a Wien filter-type E×B configuration**. Helium ions with 14 keV energy were successfully chopped at the required repetition rate of 257 kHz. The maximum chopped beam intensity of 3.5 mA, limited by the given test ion source, corresponds to a generalized perveance of 2.7·10-3. For the design species and energy, 120 keV protons, this is equivalent to a beam current of 174 mA. Beam pulses with rise times of 120 ns, flat top lengths of 85 ns to 120 ns and Full Width at Half Maximum (FWHM) between 295 ns and 370 ns were experimentally achieved.
* U. Ratzinger et al., Proc. of IPAC2011, San Sebastián, Spain, WEPS040.
** C. Wiesner et al. Proc. of IPAC2012, New Orleans, LA., USA, THPPP074.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME059 Preparation of the Coupled RFQ-IH-cavity for FRANZ 3367
 
  • M. Heilmann, C. Claessens, O. Meusel, D. Mäder, U. Ratzinger, A. Schempp, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The Frankfurt neutron source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra-short neutron pulses at high intensities and repetition rates. The neutrons will be produced using the 7Li(p, n)7Be reaction induced by a proton beam. The 175 MHz IH-type drift tube linac with 8 gaps succeeds a 4-rod-RFQ. Together they form a coupled linac combination with a length of 2.3 m and accelerate the protons from 120 keV to 2.03 MeV. As the RF losses add up to 200 kW, the cooling of both accelerators is a central challenge. The RFQ-IH combination is powered by a radio frequency amplifier, which couples the RF power into the RFQ. The two structures are connected via inductive coupling. The initial beam operation of the accelerators is configured for 50 mA in cw mode. The IH-components were fabricated, RF tuning measurements are underway. The RFQ and the IH-DTL will be conditioned separately and then be connected, aiming for a beam operation at the end of 2014. A main challenge in fabrication was the precise welding required for the water cooled drift tubes and stems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI081 A Transverse Electron Target for Heavy Ion Storage Rings 3958
 
  • S. Geyer, O.K. Kester, O. Meusel
    IAP, Frankfurt am Main, Germany
  • O.K. Kester
    GSI, Darmstadt, Germany
 
  A transverse electron target already constructed is under investigation for the application in storage rings at the FAIR facility. Using a sheet beam of free electrons in a crossed beam geometry promises a high energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width of 5 mm in the interaction region with electron densities of up to 109 electrons/cm3. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV and a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions. Also the ion optical behaviour of the target was investigated numerically. The target is integrated in a test bench to study the performance of the electron gun and the electron beam optics. The installed volume ion source delivers light ions and molecules for characterization of the target performance by measuring charge changing processes. Subsequently the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements. An overview of the project status will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)