Author: Mete, O.     [Mete, Ö.]
Paper Title Page
MOPRI049 An Ultracold Electron Facility in Manchester 714
 
  • Ö. Mete, R. Appleby, W. Bertsche, M.A. Harvey, G.X. Xia
    UMAN, Manchester, United Kingdom
  • S. Chattopadhyay
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.J. Murray
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
 
  An ultra-cold atom based electron source (UCAE) facility has been built in the Photon Science Institute (PSI), University of Manchester. In this paper, the key components and working principles of this source are introduced. Pre-commissioning status of this facility and the preliminary simulations results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI050 Preliminary Study for an RF Photocathode based Electron Injector for AWAKE Project 717
 
  • Ö. Mete, G.X. Xia
    UMAN, Manchester, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S. Chattopadhyay
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  AWAKE project, a proton driven plasma wakefield acceleration (PDPWA) experiment is approved by CERN. The PDPWA scheme consists of a seeding laser, a drive beam to establish the accelerating wakefields within the plasma cell; and a witness beam to be accelerated. The drive beam protons will be provided by the CERN's SPS. The plasma ionisation will be performed by a seeding laser and the drive beam protons to produce the accelerating wakefields. After establishing the wakefields, witness beam, namely, electron beam from a dedicated source should be injected into the plasma cell. The primary goal of this experiment is to demonstrate acceleration of a 5-15 MeV single bunch electron beam up to 1 GeV in a 10 m of plasma. This paper explores the possibility of an RF photocathode as the electron source for this PDPWA scheme based on the existing PHIN photoinjector at CERN. The modifications to the existing design, preliminary beam dynamics simulations in order to provide the required electron beam are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO074 Emittance Growth due to Multiple Coulomb Scattering in a Linear Collider based on Plasma Wakefield Acceleration 1211
 
  • Ö. Mete, K. Hanahoe, G.X. Xia
    UMAN, Manchester, United Kingdom
  • O. Karamyshev, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Labiche
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Wing
    UCL, London, United Kingdom
 
  Alternative acceleration technologies are currently under development for cost-effective, robust, compact and efficient solutions. One such technology is plasma wakefield accel- eration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance growth of the witness beam through elastic scattering from gaseous media is derived. The model is compared with the numerical studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME081 Plasma Wakefield Acceleration at CLARA PARS 1544
SUSPSNE025   use link to see paper's listing under its alternate paper code  
 
  • K. Hanahoe, Ö. Mete, G.X. Xia
    UMAN, Manchester, United Kingdom
  • D. Angal-Kalinin, J.A. Clarke, J.K. Jones, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, J.A. Clarke, J.K. Jones, J.W. McKenzie, Y. Wei, C.P. Welsch, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
  • Y. Wei, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  PARS is a proposed Plasma Accelerator Research Station using the planned CLARA (Compact Linear Accelerator for Research and Applications) electron linear accelerator at Daresbury Laboratory in the UK. In this paper, two- dimensional particle-in-cell simulations based on realistic CLARA beam parameters are presented. The results show that an accelerating gradient of 2.0 GV/m can be achieved over an accelerating length of at least 13 cm. Preliminary simulation results for a two bunch scheme show an energy gain of 70% over a length of 13 cm, giving an average accelerating gradient of 1.2 GeV/m.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME050 SPP Beamline Design and Beam Dynamics 3338
 
  • G. Turemen, B. Yasatekin
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • A. Alacakir
    SNRTC, Ankara, Turkey
  • M. Celik, Z. Sali
    Gazi University, Faculty of Arts and Sciences, Teknikokullar, Ankara, Turkey
  • Ö. Mete
    UMAN, Manchester, United Kingdom
  • G. Unel
    UCI, Irvine, California, USA
  • V. Yildiz
    Bogazici University, Bebek / Istanbul, Turkey
 
  The Radio Frequency Quadrupole (RFQ) of SNRTC Project Prometheus (SPP) will be a demonstration and educational machine which will accelerate protons from 20 keV to 1.5 MeV. The project is funded by Turkish Atomic Energy Authority (TAEK) and it will be located at Saraykoy Nuclear Research and Training Center (SNRTC) in Ankara. The SPP beamline consists of a multi-cusp H+ ion source, a Low Energy Beam Transport (LEBT) line and a four-vane RFQ operating at 352.2 MHz. The design studies for the multi-cusp ion source (RF or DC) were performed with IBSimu and SIMION software packages. The source has already been produced and currently undergoes extensive testing. There is also a preliminary design for the solenoid based LEBT, POISSON and PATH were used in parallel for the preliminary design. Two solenoid magnets are produced following this design. The RFQ design was made using LIDOS. RFQ.Designer and it was crosschecked with a home-grown software package, DEMIRCI. The initial beam dynamics studies have been performed with both LIDOS and TOUTATIS. This paper discusses the design of the SPP beamline focusing on the RFQ beam dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)