Author: Mazzoni, S.
Paper Title Page
MOPRO031 Abort Gap Cleaning for LHC Run 2 138
 
  • J.A. Uythoven, A. Boccardi, E. Bravin, B. Goddard, G.H. Hemelsoet, W. Höfle, D. Jacquet, V. Kain, S. Mazzoni, M. Meddahi, D. Valuch
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA02 Recent Results from CTF3 Two Beam Test Stand 1880
 
  • W. Farabolini, F. Peauger
    CEA/DSM/IRFU, France
  • Ch. Borgmann, J. Ögren, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • R. Corsini, D. Gamba, A. Grudiev, M.A. Khan, S. Mazzoni, J.L. Navarro Quirante, R. Pan, J.R. Towler, N. Vitoratou, K. Yaqub
    CERN, Geneva, Switzerland
 
  From mid-2012, the Two Beam Test Stand (TBTS) in the CTF3 Experimental Facility is hosting 2 high gradient accelerating structures powered by a single power extraction and transfer structure in a scheme very close to the CLIC basic cell. We report here about the results obtained with this configuration as: energy gain and energy spread in relation with RF phases and power, octupolar transverse beam effects compared with modeling predictions, breakdown rate and breakdown locations within the structures. These structures are the first to be fitted with Wake Field Monitors (WFM) that have been extensively tested and used to further improve the structures alignment on the beam line. These results show the unique capabilities of this test stand to conduct experiments with real beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOCA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME177 A Novel Approach to Synchrotron Radiation Simulation 3687
SUSPSNE077   use link to see paper's listing under its alternate paper code  
 
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • G. Trad
    LPSC, Grenoble Cedex, France
 
  At the Large Hadron Collider (LHC) at CERN, synchrotron radiation (SR) is used to continuously monitor the transverse properties of the beams. Unfortunately the machine and beam parameters are such that the useful radiation emitted inside a separation dipole, chosen as source, is diffraction limited affecting heavily the accuracy of the measurement. In order to deconvolve the diffraction effects from the acquired beam images and in order to design an alternative monitor based on a double slit interferometer an extensive study of the synchrotron light source and of the optical propagation has been made. This study is based on simulations combining together several existing tools: SRW for the source, ZEMAX for the transport and MATLAB for the "glue" and analysis of the results. The resulting tool is very powerful and can be easily adapted to other synchrotron radiation problems. In this paper the simulation package and the way it is used will be described as well as the results obtained for the LHC and SPS cases.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME177  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME178 Status of the CLIC/CTF Beam Instrumentation R&D 3690
 
  • M. Wendt, A. Benot-Morell, B.P. Bielawski, L.M. Bobb, E. Bravin, T. Lefèvre, F. Locci, S. Magnoni, S. Mazzoni, R. Pan, J.R. Towler, E.N. del Busto
    CERN, Geneva, Switzerland
  • T. Aumeyr, S.T. Boogert, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • W.A. Gillespie, D.A. Walsh
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Lyapin, J. Snuverink
    JAI, Egham, Surrey, United Kingdom
  • J.M. Nappa, S. Vilalte
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  The Compact Linear Collider (CLIC) is an e+/e collider based on the two-beam acceleration principle, proposed to support precision high-energy physics experiments in the energy range 0.5-3 TeV. To achieve a high luminosity of up to 6e34cm-2s−1, the transport and preservation of a low emittance beam is mandatory. A large number and great variety of beam diagnostics instruments is foreseen to verify and guarantee the required beam quality. We present the status of the beam diagnostics developments and experimental results accomplished at the CLIC Test Facility (CTF), including new ideas for simplification and cost reduction of the CLIC beam instrumentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME178  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME184 Improvement of Beam Imaging Systems through Optics Propagation Simulations 3709
 
  • B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A.S. Aryshev
    KEK, Ibaraki, Japan
  • B. Bolzon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • B. Bolzon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev, K.O. Kruchinin
    JAI, Egham, Surrey, United Kingdom
 
  Optical Transition Radiation (OTR) is emitted when a charged particle crosses the interface between two media with different dielectric properties. It has become a wide-spread method for beam profile measurements. However, there are no tools to simulate the propagation of the OTR electric field through an optical system. Simulations using ZEMAX have been performed in order to quantify optical errors, such as aberrations, diffraction, depth of field and misalignment. This paper focuses on simulations of vertically polarized OTR photons with the aim of understanding what limits the resolution of realistic beam imaging systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME184  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME189 Simulation Studies of Diffraction Radiation 3722
 
  • T. Aumeyr, R. Ainsworth, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • M.G. Billing
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L.M. Bobb, B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
 
  Transition Radiation (TR) and Diffraction Radiation (DR) are produced when a relativistic charged particle moves through a medium or in the vicinity of a medium respectively. The target atoms are polarised by the electric field of the charged particle, which then oscillate thus emitting radiation with a very broad spectrum. The spatial-spectral properties of TR/DR are sensitive to various electron beam parameters. Several projects aim to measure the transverse (vertical) beam size using TR or DR. This paper reports on recent studies using Zemax, presenting studies on finite beam sizes and the orientation of the beam ellipse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME189  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)