Author: Marsching, S.
Paper Title Page
THPRO104 Drivers and Software for MTCA.4 3137
 
  • M. Killenberg, L.M. Petrosyan, Ch. Schmidt
    DESY, Hamburg, Germany
  • S. Marsching
    Aquenos GmbH, Baden-Baden, Germany
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
 
  Funding: This work is supported by the Helmholtz Validation Fund HVF-0016 "MTCA.4 for Industry".
The MicroTCA.4 crate standard is a powerful electronic platform for digital and analog signal processing. Besides its hardware modularity, it is the software reliability and flexibility as well as the easy integration into existing software infrastructures that will drive the widespread adoption of this new standard. The DESY MicroTCA.4 User tool kit (MTCA4U) provides drivers, and a C++ API for accessing the MicroTCA.4 devices and interfacing to the control system. The PCIexpress driver is universal for basic access to all devices developed at DESY. Modularity and expandability allow to generate device-specific drivers with a minimum of code, inheriting the functionality of the base driver. A C++ API allows convenient access to all device registers by name, using mapping information which is automatically generated when building the firmware. A graphical user interface allows direct read and write access to the device, including plotting functionality for recorded raw data. Higher level applications will provide callback functions for easy integration into control systems, while keeping the application code independent from the actual control system in use.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO066 Status of FLUTE 231
 
  • M. Schuh, I. Birkel, A. Borysenko, A. Böhm, N. Hiller, E. Huttel, S. Höninger, V. Judin, S. Marsching, A.-S. Müller, A.-S. Müller, A.-S. Müller, S. Naknaimueang, M.J. Nasse, R. Rossmanith, R. Ruprecht, M. Schwarz, M. Weber, P. Wesolowski
    KIT, Eggenstein-Leopoldshafen, Germany
  • R.W. Aßmann, M. Felber, K. Flöttmann, M. Hoffmann, H. Schlarb
    DESY, Hamburg, Germany
  • H.-H. Braun, R. Ganter, V. Schlott, L. Stingelin
    PSI, Villigen PSI, Switzerland
 
  FLUTE, a new linac-based test facility and THz source is currently being built at the Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It consists of an RF photo gun and a traveling wave linac accelerating electrons to beam energies of ~41 MeV in the charge range from a few pC up to 3 nC. The electron bunch will then be compressed in a magnetic chicane in the range of 1 - 300 fs, depending on the charge, in order to generate coherent THz radiation with high peak power. An overview of the simulation and hardware status is given in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB02 Status of Single-shot EOSD Measurement at ANKA 1909
 
  • N. Hiller, A. Borysenko, E. Hertle, V. Judin, B. Kehrer, S. Marsching, A.-S. Müller, M.J. Nasse, M. Schuh, P. Schönfeldt, N.J. Smale, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • P. Peier, B. Steffen
    DESY, Hamburg, Germany
  • V. Schlott
    PSI, Villigen PSI, Switzerland
 
  Funding: This work is funded by the BMBF contract numbers: 05K10VKC, 05K13VKA.
ANKA is the first storage ring in the world with a near-field single-shot electro-optical (EO) bunch profile monitor. The method of electro-optical spectral decoding (EOSD) uses the Pockels effect to modulate the longitudinal electron bunch profile onto a long, chirped laser pulse passing through an EO crystal. The laser pulse is then analyzed with a single-shot spectrometer and from the spectral modulation, the temporal modulation can be extracted. The setup has a sub-ps resolution (granularity) and can measure down to bunch lengths of 1.5 ps RMS for bunch charges as low as 30 pC. With this setup it is possible to study longitudinal beam dynamics (e. g. microbunching) occurring during ANKA's low-alpha-operation, an operation mode with compressed bunches to generate coherent synchrotron radiation in the THz range. In addition to measuring the longitudinal bunch profile, long-ranging wake-fields trailing the electron bunch can also be studied, revealing bunch-bunch interactions.
 
slides icon Slides WEOBB02 [12.753 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME123 Electro-optical Bunch Length Monitor for FLUTE: Layout and Simulations 3527
 
  • A. Borysenko, E. Hertle, N. Hiller, V. Judin, B. Kehrer, S. Marsching, A.-S. Müller, M.J. Nasse, R. Rossmanith, R. Ruprecht, M. Schuh, M. Schwarz, P. Wesolowski
    KIT, Karlsruhe, Germany
  • B. Steffen
    DESY, Hamburg, Germany
 
  Funding: This work is funded by the European Union under contract PITN-GA-2011-289191
A new compact linear accelerator FLUTE is currently under construction at Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It aims at obtaining femtosecond electron bunches (~1fs - 300 fs) with a wide charge range (1 pC - 3 nC) and requires a precise bunch length diagnostic system. Here we present the layout of a bunch length monitor based on the electro-optic technique of spectral decoding using an Yb-doped fiber laser system (central wavelength 1030 nm) and a GaP crystal. Simulations of the electro-optic signal for different operation modes of FLUTE were performed and main challenges are discussed in this talk. This work is funded by the European Union under contract PITN-GA-2011-289191
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)