Author: Marinelli, A.
Paper Title Page
THPPA01 FEL R&D Initiatives at the SLAC National Accelerator Laboratory 2842
 
  • A. Marinelli
    SLAC, Menlo Park, California, USA
 
  The successful lasing of the linac coherent light source in 2009, the first x-ray free-electron laser (xFEL) in the world, has opened a new era for x-ray photon science. The unprecedented intensity and coherence of the LCLS photon pulses have enabled groundbreaking experiments in a wide variety of fields ranging from coherent x-ray imaging to molecular and atomic physics. Despite the success of x-ray free-electron lasers, there is a steady push to extend and improve their capabilities fueled by the users' demands for new modes of operation and more precise photon and electron diagnostics. In my talk I will present several R&D initiatives at the SLAC National Accelerator Laboratory geared towards improving the performance and extending the capabilities of x-ray FELs. In particular I will focus on the spectral manipulation of FELs and our recent development of the multibunch and multicolor x-ray FEL modes at LCLS as well as our demonstration of the longitudinal space-charge amplifier as a broadband coherent light source at the NLCTA test accelerator.  
slides icon Slides THPPA01 [10.793 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPPA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO038 Energy-Silenced HGHG 2946
 
  • E. Hemsing, G. Marcus, A. Marinelli
    SLAC, Menlo Park, California, USA
  • D. Xiang
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
 
  We study the effect of longitudinal space charge on the correlated energy spread of a relativistic beam that has been microbunched for the emission of high harmonic radiation. We show that, in the case of microbunching induced by a laser modulator followed by a dispersive chicane, longitudinal space charge forces can act to significantly reduce the induced energy spread of the beam without a reduction in the harmonic bunching content. This effect may significantly relax constraints on the harmonic number achievable in HGHG FELs, which are otherwise limited by the induced energy spread from the laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)