Author: Marchetti, B.
Paper Title Page
TUPME064 Laser-driven Acceleration with External Injection at SINBAD 1515
 
  • J. Grebenyuk, R.W. Aßmann, U. Dorda, B. Marchetti
    DESY, Hamburg, Germany
 
  One of the important milestones to make plasma acceleration a realistic technology for user-applications is demonstration of bunch acceleration inside a plasma wake with minimal degradation of its quality. This can be achieved by external injection of beams into a plasma accelerator. SINBAD is a proposed dedicated accelerator research and development facility at DESY where amongst other topics laser-driven wakefield acceleration with external injection of ultra-short bunches will be exploited. To minimise energy-spread growth the bunch should occupy a small fraction of the plasma wavelength. In addition it has to be longitudinally synchronised with the laser driver to high accuracy. To avoid emittance growth the beam Twiss parameters have to be matched to the intrinsic beta-function of the plasma. To facilitate matching and synchronisation, acceleration at low plasma densities can be advantageous. We present a preparatory feasibility study for future plasma experiments at SINBAD using simulations with the particle-in-cell code OSIRIS. Field-gradient scaling laws are presented together with parameter scans of externally injected bunch, such as its injection phase, charge and length.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO044 Report on Gun Conditioning Activities at PITZ in 2013 2962
 
  • M. Otevřel, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, G. Kourkafas, M. Krasilnikov, D. Malyutin, D. Melkumyan, T. Rublack, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • P. Boonpornprasert, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • F. Brinker, K. Flöttmann, S. Lederer, B. Marchetti, S. Schreiber
    DESY, Hamburg, Germany
  • Ye. Ivanisenko
    PSI, Villigen PSI, Switzerland
  • M.A. Nozdrin
    JINR, Dubna, Moscow Region, Russia
  • G. Pathak
    Uni HH, Hamburg, Germany
  • D. Richter
    BESSY GmbH, Berlin, Germany
 
  Recently three RF guns were prepared at the Photo Injector Test Facility at DESY, location Zeuthen (PITZ) for their subsequent operation at FLASH and the European XFEL. The gun 3.1 is a previous cavity design and is currently installed and operated at FLASH, the other two guns 4.3 and 4.4 were of the current cavity design and are dedicated to serve for the start-up of the European XFEL photo-injector. All three cavities had been dry-ice-cleaned prior their conditioning and hence showed low dark current levels. The lowest dark current level – as low as 60μA at 65MV/m field amplitude – has been observed for the gun 3.1. This paper reports in details about the conditioning process of the most recent gun 4.4. It informs about experience gained at PITZ during establishing of the RF conditioning procedure and provides a comparison with the other gun cavities in terms of the dark currents. It also summarizes the major setup upgrades, which have affected the conditioning processes of the cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO051 Emittance Increase and Matching along the Tomography Module at PITZ 1144
SUSPSNE050   use link to see paper's listing under its alternate paper code  
 
  • G. Kourkafas, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, M. Krasilnikov, D. Malyutin, B. Marchetti, D. Melkumyan, M. Otevřel, T. Rublack, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • G. Pathak
    Uni HH, Hamburg, Germany
 
  The Photo Injector Test facility at DESY, Zeuthen site (PITZ), focuses on testing, characterizing and optimizing high brightness electron sources for free electron lasers. PITZ is equipped with a number of transverse emittance measurement stations, among which is the Phase Space Tomography (PST) module. A PST measurement requires a specific transport along the tomography lattice, which ideally rotates the beam in the normalized transverse phase space by 180 degrees in equidistant steps. A preceding matching section is used to provide an injection scheme that delivers the necessary beam parameters for the design transport along the tomography lattice. The high charge density and moderate energy of the electron bunch at PITZ contribute to significant space-charge forces which lead to emittance growth and consequent mismatches of the design parameters. This article presents and evaluates measurements of the emittance increase along the matching section of a 1 nC beam at 22 MeV/c under different focusing schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME047 SINBAD - A Proposal for a Dedicated Accelerator Research Facility at DESY 1466
 
  • R.W. Aßmann, C. Behrens, R. Brinkmann, U. Dorda, K. Flöttmann, B. Foster, J. Grebenyuk, I. Hartl, M. Hüning, Y.C. Nie, J. Osterhoff, A. Rühl, H. Schlarb, B. Schmidt
    DESY, Hamburg, Germany
  • M. Groß, B. Marchetti, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • F.J. Grüner, B. Hidding, A.R. Maier
    Uni HH, Hamburg, Germany
  • F.X. Kärtner, B. Zeitler
    CFEL, Hamburg, Germany
  • A.-S. Müller, M. Schuh
    KIT, Karlsruhe, Germany
 
  A new, dedicated accelerator research facility SINBAD (Short INnovative Bunches and Accelerators at DESY) is proposed. This facility is aimed at promoting two major goals: (1) Short electron bunches for ultra-fast science. (2) Construction of a plasma accelerator module with useable beam quality. Research and development on these topics is presently ongoing at various places at DESY, as add-on experiments at operational facilities. The two research goals are intimately connected: short bunches and precise femtosecond timing are requirements for developing a plasma accelerator module. The scientific case of a dedicated facility for accelerator research at DESY is discussed. Further options are mentioned, like the use of a 1 GeV beam from Linac2 for FEL studies and the setup of an attosecond radiation source with advanced technology. The presently planned conversion of the DORIS storage ring and its central halls into the SINBAD facility is described. The available space will allow setting up several independent experiments with a cost-effective use of the same infrastructure. National and international contributions and proposals can be envisaged.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)