Author: Magnin, N.
Paper Title Page
MOPRO030 Changes to the LHC Beam Dumping System for LHC Run 2 134
 
  • J.A. Uythoven, M.G. Atanasov, J. Borburgh, E. Carlier, S. Gabourin, B. Goddard, N. Magnin, V. Senaj, N. Voumard, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The LHC beam dumping system performed according to expectations during Run 1 of the LHC (2009 – 2013). A brief overview of the experience is given, including a summary of the observed performance in comparison to expectations. An important number of changes are applied to the beam dumping system during the present Long Shutdown on order to further improve its system safety and performance. They include the addition of a direct link between the Beam Interlock System and the re-triggering system of the dump kickers, the modification of the uninterrupted electrical power distribution architecture, the upgrade of the HV generators, the consolidation of the trigger synchronization system, the modifications to the triggering system of the power switches and the changes to the dump absorbers TCDQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO018 Prospects for the LHC Optics Measurements and Corrections at Higher Energy 1046
 
  • R. Tomás, T. Bach, J.M. Coello de Portugal, V. Kain, M. Kuhn, A. Langner, Y.I. Levinsen, K.S.B. Li, E.H. Maclean, N. Magnin, V. Maier, M. McAteer, T. Persson, P.K. Skowroński, R. Westenberger
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  LHC will resume operation in 2015 at 6.5 TeV. The higher energy allows for smaller IP beta functions, further enhancing the optics errors in the triplet quadrupoles. Moreover the uncertainty in the calibration of some quadrupoles will slightly increase due to saturation effects. The complete magnetic cycle of the LHC will take longer due to the higher energy and extended squeeze sequence. All these issues require more precise and more efficient optics measurements and corrections to guarantee the same optics quality level as in 2012 when a 7% peak beta-beating was achieved. This paper summarizes the on-going efforts for achieving faster and more accurate optics measurements and corrections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI021 Implementation of a Direct Link between the LHC Beam Interlock System and the LHC Beam Dumping System Re-triggering Lines 3810
 
  • S. Gabourin, E. Carlier, R. Denz, N. Magnin, J.A. Uythoven, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • M. Bartholdt, B. Bertsche, V. Vatansever, P. Zeiler
    Universität Stuttgart, Stuttgart, Germany
 
  To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump blocks must be guaranteed at all times. When a beam dump is demanded, the Beam Interlock System communicates this request to the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System. Both systems were built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the Trigger Synchronisation and Distribution System, a new direct link from the Beam Interlock System to the re-triggering lines of the LHC Beam Dumping System will be implemented for the start-up with beam in 2015. The link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called asynchronous beam dumps nor compromise machine availability. This paper describes the implementation choices of this link. Furthermore the results of a reliability analysis to quantify its impact on LHC machine availability are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)