Author: Luo, Q.
Paper Title Page
TUPRO097 Magnets and Magnetic Field Measurements of Hefei Light Source II 1268
 
  • Q. Luo, N. Chen, G. Feng, N. Hu, K. Tang, Y.L. Yang, J.J. Zheng
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China 11005106, 11105141, and 11375178.
The paper introduces magnets and magnetic field measurements of Hefei Light Source II. In the year 2012-2014, NSRL of USTC upgraded the HLS to HLS II. The HLS II, which was built to improve the performance of the light source, in particular to get higher brilliance of synchrotron radiation and increase the number of straight section insertion devices, is now at commissioning stage. Main purpose of this stage is to achieve full energy with high current, fine emittance and enough life time based on adjustment of magnet current, RF voltage and so on. Most of the magnets were replaced during this project. A new magnetic field measurement platform was built and used for the sampling test on new magnets. Test results showed that the discreteness and uniformity of integrated magnetic field of magnets all meet the requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME140 New Beam Diagnostics and Related Study on HLS Photo-Injector and HLS II 3578
 
  • Q. Luo, H.T. Li, P. Lu, B.G. Sun, K. Tang, J.J. Zheng, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China 11005105, 11005106, 11205156 and 11375178.
A team in NSRL is now doing research about small model accelerators and carrying out series of related experiments on HLS photo-injector and HLS II storage ring. Cavity beam multi-parameter monitor system designed for the HLS photocathode RF electron gun consists of a beam position monitor, a beam quadrupole moment monitor and a beam density and bunch length monitor. TM0n0 modes of cavity can be used to work out beam density and bunch length simultaneously. Miniaturization of FEL facilities is now being studied based on results of experiments and theoretical work before. The team also participate in commissioning of HLS II, i.e. measured work points of the new storage ring and did some research on longitudinal bunch-by-bunch feedback system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME143 Measuring Energy Spread Using Beam Screen Monitor and Four Strip-Line Electrodes for Hls II Injector* 3587
SUSPSNE076   use link to see paper's listing under its alternate paper code  
 
  • K. Tang, J. Liu, P. Lu, Q. Luo, B.G. Sun, H. Xu, J. Xu, Y.L. Yang, Z.R. Zhou, J.Y. Zou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In order to nondestructively measure the beam energy spread with a beam energy of 0.8GeV in the injector at the upgrade project of Hefei Light Source (HLS II) in real time, a beam energy spread monitor (BESM) using beam position monitor (BPM) with four stripline electrodes has been developed. And a screen monitor (SM) near the BESM is used to measure beam energy spread destructively. This paper introduces in brief the beam position measurement system and beam transverse profile measurement system. The relationship between the transverse size at the BESM and at the SM (Flag3) is discussed in detail in this report. The result shows that energy spread measuring result of BESM and SM is 0.19% and 0.18% respectively. So we can draw a conclusion that the BESM is capable of nondestructively measuring the beam energy spread.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME145 BPM Signal Channel Characterization Test based on TDR for HLS II Storage Ring 3593
 
  • J.J. Zheng, C. Cheng, P. Lu, Q. Luo, B.G. Sun, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A new BPM system on the upgraded Hefei light source (HLSII) storage ring is installed. Before the machine commissioning, the BPM system should be carefully tested, such as the conductivity and integrity of BPM signal channels from button electrodes to digital beam position processors (pickups, cables and connectors). This paper presents an experience of signal channel test based on time domain reflection (TDR) for HLS II storage ring BPM system. Basing on the wave propagation method, an analytic expression for the signal from TDR on BPM signal channel is briefly introduced. The conductivity and integrity of the BPM signal channels can be verified by comparing the TDR waveform to theory signal. All the BPM signal channels are tested by the TDR in order to verify electronic characteristic and the usability. And some breakdowns are analysed and handled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)