Author: Liu, Y.-H.
Paper Title Page
MOPME078 Relief of an Electric Field via a Cone Structure 550
 
  • Y.T. Huang, C.K. Chan, C.S. Chen, J.-R. Chen, G.-Y. Hsiung, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  A terminated power cable is typically applied not only for terminated ends but also to connect two or more cables. The electric field inside the insulation layer becomes disturbed when a coaxial cable structure is broken and the electric stress increases near the ground edge. A structure of cone type is a major method to alter the lines of equi- potential and to relieve the electric stress around the ground. The dimensions of the cone depend on the cable structure. In this paper we introduce a way to calculate the displacement of equi-potential lines when a cone is brought into a coaxial cable, RG220, and then determine a suitable angle and length of the cone, which are important factors to withstand tens of kV and even greater. The corresponding high-voltage tests are also presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME079 The DC and AC Withstands Test for TPS Booster Injection Kicker 554
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, H.H. Chen, J.-R. Chen, Y.T. Huang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  TPS requires highly precise and stable pulsed magnets for top-up mode operation. One injection and two extraction in vacuum kicker magnets in the booster ring are designed and noticed to minimize driving voltage. The HV insulation for magnet itself and vacuum feedthrough need to be tested. A DC withstand voltage tester MUSASHI 3802 (Model: IP-701G) is used to test the DC breakdown voltage, which the maximum driving voltage is 37 kV. And the AC withstand voltage tester was also test the AC breakdown voltage. Thicker than 10 mm ceramic plate could effectively avoid the breakdown occurred with 37 kV DC charging. Thus HV withstand voltage will be higher in vacuum chamber and the insulation with HV will not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO013 Design Modifications and Installation of the Injection Girder System in the Taiwan Photon Source 1968
 
  • K.H. Hsu, J.-R. Chen, Y.L. Chu, H.C. Ho, D.-G. Huang, W.Y. Lai, C.J. Lin, Y.-H. Liu, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The prototype of TPS injection girder system was designed and installed in a temporary factory. As the leakage field of the kicker magnet in the prototype was found to be too large according to both simulation and measurement to be acceptable, the lattice was altered to fit the requirements. In this paper, we present the design modifications of the injection girder system due to the new lattice. The DC septum magnet is replaced by a pre-AC septum magnet, of which its adjustable stage must be redesigned. The positions of vacuum components in the injection girder are also altered; we add some new holes in the prototype girder. The prototype of an injection girder system after modification has been installed in the tunnel of Taiwan Photon Source. The accuracy of position of three girders installed, and the stages for the septum or kicker magnet are within 0.25 and 0.08 mm, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO014 The Installations of the In-vacuum Kicker System of the Booster Injection Section in TPS 1971
 
  • C.S. Chen, C.K. Chan, K.H. Hsu, Y.T. Huang, Y.-H. Liu, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  The installations of the In-Vacuum kicker system of the booster injection in TPS are presented in this article. Due to the more than 20 kV operation voltages and precise positioning requirements, the insulations and positioning systems are designed with more attentions. Although increasing the gap between high potential parts and ground could provide enough withstanding voltage, on the other hand, the insufficient space and vacuum requirements limit the sizes of insulators. Therefore, lots of effort have been done to deal with these conflicts. All assembling processes will be described in this paper as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME197 Power Saving Status in the NSRRC 3744
 
  • J.-C. Chang, Y.C. Chang, Y.F. Chiu, Y.-C. Chung, C.W. Hsu, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC), Taiwan has completed the construction of the civil and utility system engineering of the Taiwan Photon Source (TPS) in 2013 and 2014, respectively. The contract power capacities of the Taiwan Light Source (TLS) and the TPS with the Taiwan Power Company (TPC) are 5.5MW and 3MW currently, respectively. The ultimate power consumption of the TPS is estimated about 12.5MW. To cope with increasing power requirement in the near future, we have been conducting several power saving schemes for years. They include power consumption control, optimization of chillers operation, air conditioning system improvement, power factor improvement, application of heat pump, and promotion for power saving.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME197  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME198 TPS Storage and Booster Ring Cable Tray Installation Status and CIA Design Arrangement 3748
 
  • Y.-H. Liu, J.-R. Chen
    NSRRC, Hsinchu, Taiwan
 
  The TPS infrastructure and the whole subsystems for the accelerator are now approach to finish. The cable trays for booster and storage ring in tunnel are almost finished. The 3 layers cable trays for booster ring are for dipole, quaturpole power supply cable and IC/VA signal cable respectively. The designed for limited space for cooling water below the cable tray and the magnet girder above. The storage ring cable tray also designed for different subsystems, and separate the power and signal layer. The power racks for all subsystem are located in control and instrument area (CIA). The magnet and ID power supply are placed in the 1st floor and the IC, VA, MP and FE control racks are placed in the 2nd floor. The separation between the power and signal cable tray are noticed for the whole path inside tunnel and CIA. Now the subsystem is under installation, although it is hard to cabling but it would not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME198  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME200 Status of the Utility System Construction for the 3 GeV TPS Storage Ring 3751
 
  • J.-C. Chang, W.S. Chan, C.S. Chen, J.-R. Chen, Y.-C. Chung, C.W. Hsu, K.C. Kuo, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  The construction of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) was started in the end of 2009. The utility building for the TPS ring had been completed in the end of 2013. The building use license had been approved in Sep. 2013. The whole construction engineering has been completed. The acceptance test is scheduled on July 2014. Total budget of this construction is about four million dollars. This utility system presented in this paper includes the cooling water, air conditioning, electrical power, and compressed air systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME200  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)