Author: Liu, S.
Paper Title Page
MOPRO033 Design and Feasibility Study of a Transverse Halo Collimation System for ATF2 145
 
  • N. Fuster-Martínez
    Valencia University, Atomic Molecular and Nuclear Physics Department, Valencia, Spain
  • P. Bambade, S. Liu, S. Wallon
    LAL, Orsay, France
  • A. Faus-Golfe, J. Resta-López
    IFIC, Valencia, Spain
  • K. Kubo, T. Okugi, T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
  • I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: Work supported by FPA2010-21456-C02-01 and by i-link 0704
This paper presents the design of a halo collimation system for the ATF2 beamline. The main objective is the reduction of background noise that limits the performance of key diagnostic devices around the final focal point (IP), especially the Shintake Monitor (IPBSM) used for measuring the nanometer level vertical beam sizes and the future Diamond Sensor (DS) for measuring the beam halo. Beam tracking simulations have been performed to optimize the position and characteristics of the halo collimation devices. Furthermore the collimator wakefield-induced effect is being studied.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME091 Beam Halo Measurements using Wire Scanners at ATF2 3445
 
  • S. Liu, P. Bambade
    LAL, Orsay, France
  • S. Bai, J. Gao, D. Wang
    IHEP, Beijing, People's Republic of China
  • A. Faus-Golfe, N. Fuster-Martínez
    IFIC, Valencia, Spain
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  Funding: Chinese Scholarship Council, FPA2010-21456-C02-01 and i-link 0704
Beam halo hitting on the beam pipe after the Interaction Point (IP) can generate a large amount of background for the measurements of the nano meter beam size using the laser interferometer beam size monitor (Shintake monitor) at ATF2. In order to investigate the beam halo transverse distribution, a diamond detector will be installed downstream of the IP. A feasibility study of a transverse halo collimation system to reduce the background for these measurements is also in progress. Prior to the diamond detector installation, a first attempt of beam halo measurements have been performed in 2013 using the currently installed wire scanners. Modeling of the beam halo distribution in the extraction (EXT) line was done and compared with the old modeling for ATF. Beam halo measurements were also done using the post-IP wire scanner to investigate the beam halo distribution at post-IP.
Work supported by Chinese Scholarship Council, FPA2010-21456-C02-01 and i-link 0704
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME092 Status of Diamond Detector Development for Beam Halo Investigation at ATF2 3449
SUSPSNE070   use link to see paper's listing under its alternate paper code  
 
  • S. Liu, P. Bambade, F. Bogard, J-N. Cayla, H. Monard, C. Sylvia, T. Vinatier
    LAL, Orsay, France
  • N. Fuster-Martínez
    IFIC, Valencia, Spain
  • I. Khvastunov
    National Taras Shevchenko University of Kyiv, The Faculty of Physics, Kyiv, Ukraine
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  Funding: Chinese Scholarship Council
We are developing a diamond detector for beam halo and Compton spectrum diagnostics after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for ILC and CLIC linear collider projects. Tests of a 500 μm thick sCVD diamond detector with a dimension of 4.5 mm×4.5 mm have been carried out with radioactive sources and with electron beam from PHIL low energy (<10 MeV) photo-injector at LAL. The tests at PHIL were done with different beam intensities in air, just after the exit window at the end of the beam line, to test the response of the diamond detector and the readout electronics. We have successfully detected signals from single electrons, using a 40 dB amplifier, and from an electron beam of 108 electrons, using a 24 dB attenuator. A diamond sensor with 4 strips has been designed and fabricated for installation in the vacuum chambers of ATF2 and PHIL, with the aim to scan both the beam halo (with 2 strips of 1.5 mm×4 mm) and the beam core (with 2 strips of 0.1 mm×4 mm) transverse distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME094 Measurement of Low-charged Electron Beam with a scintillator Screen 3456
 
  • T. Vinatier, P. Bambade, C. Bruni, S. Liu
    LAL, Orsay, France
 
  Measuring electron beam charge lower than 1pC is very challenging since the traditional diagnostics, like Faraday Cup and ICT, are limited in resolution to a few pC. A way to simply measure lower charge would be to use the linear relation, existing before saturation regime, between the incident charge and the total light intensity emitted by a YAG screen. Measurement has been performed on PHIL accelerator at LAL, with charge lower than 50pC, with a YAG screen located just in front of a Faraday Cup. It shows a very good linear response of the YAG screen up to the Faraday Cup resolution limit (2pC) and therefore allows calibrating the YAG screen for lower charge measurement with an estimated precision of 4%. A noise analysis allows estimating the YAG screen resolution limit around 40fC. Results of low charge measurement on PHIL will be shown and compared to those coming from a diamond detector installed on PHIL, in order to validate the measurement principle and to determine its precision and resolution limit. Such simple measurement may thereafter be used as single-shot charge diagnostic for electron beam generated and accelerated by laser-plasma interaction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)