Author: Lambert, A.R.
Paper Title Page
THPME027 Development of the injector II RFQ for China ADS project 3280
 
  • Z.L. Zhang, Y.H. Guo, Y. He, H. Jia, C.X. Li, Y. Liu, L. Lu, G. Pan, A. Shi, L.B. Shi, L.P. Sun, W.B. Wang, X.W. Wang, J.X. Wu, Q. Wu, X.B. Xu, B. Zhang, J.H. Zhang, H.W. Zhao, T.M. Zhu
    IMP, Lanzhou, People's Republic of China
  • M.D. Hoff, A.R. Lambert, D. Li, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
  • C. Zhang
    GSI, Darmstadt, Germany
 
  As one of the main components of the injector II of China ADS LINAC project, an RFQ working at 162.5MHz is used to accelerate proton beams of 15mA from 30 keV to 2.1 MeV. The four vane RFQ has been designed in collaboration with Lawrence Berkeley National Laboratory and built at the workshop of the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). Low power test of the cavity have been completed, and it shows the field flatness is within ±1% and the unloaded Q is 12600. RF conditioning has been completed, results of preliminary beam test show the output beam energy is 2.16 MeV with energy spread of 3.5% and the transmission efficiency is 97.9%. Continuous wave (CW) beam of 2.3 mA has been accelerated for more than one hour.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI070 Tuner System Simulation and Tests for the 201-MHz MICE Cavity 3927
 
  • L. Somaschini
    INFN-Pisa, Pisa, Italy
  • A.J. DeMello, A.R. Lambert, S.P. Virostek
    LBNL, Berkeley, California, USA
  • J.H. Gaynier, R.J. Pasquinelli, D.W. Peterson, R.P. Schultz
    Fermilab, Batavia, Illinois, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: Supported by the US Department of Energy Office of Science through the Muon Accelerator Program.
The frequency of MICE cavities is controlled by pneumatic tuners as their operation is impervious to large magnetic fields. The mechanical and RF transfer functions of the tuner were simulated in ANSYS. The first of these tuning systems was assembled and tested at Fermilab. The mechanical response and the RF tuning transfer function have been measured and compared with simulation results. Finally the failure of different actuators has been simulated and tested to predict the operational limits of the tuner.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)