Author: Kramer, T.
Paper Title Page
MOPME074 High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets 541
 
  • M.J. Barnes, P. Adraktas, G. Bregliozzi, S. Calatroni, P. Costa Pinto, H.A. Day, L. Ducimetière, V. Gomes Namora, T. Kramer, V. Mertens, M. Taborelli
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME075 Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals 544
 
  • M.J. Barnes, S. Bouleghlimat, L. Ducimetière, M. Garlaschè, V. Gomes Namora, T. Kramer, R. Noulibos, Y. Sillanoli, Z.K. Sobiech, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated for improving emissivity without degrading vacuum properties. In addition initial concepts for improved cooling are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME076 Upgrade of the SPS Injection Kicker System for LHC High Luminosity Operation with Heavy Ion Beam 547
 
  • T. Kramer, J. Borburgh, L. Ducimetière, B. Goddard, L. Sermeus, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME071 Injection and Extraction Systems for a High-Power Proton Synchrotron at CERN 3400
 
  • W. Bartmann, V. Fedosseev, B. Goddard, T. Kramer
    CERN, Geneva, Switzerland
 
  A new High-Power Proton Synchrotron (HP-PS) is being studied at CERN for the second phase of the Long Baseline Neutrino facility (LAGUNA-LBNO) where a 2 MW beam power shall impinge onto a target. A 4 GeV H injection based on foil stripping and extendable to laser-assisted magnet stripping is described. The proposed laser-assisted stripping is assessed with regard to the laser power requirements. The feasibility of a fast extraction system at 75 GeV is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME072 Delivery of Special Magnets for the MedAustron Project 3403
 
  • T. Kramer, M.G. Atanasov, R.A. Barlow, M.J. Barnes, J. Borburgh, L. Ducimetière, T. Fowler, M. Hourican, V. Mertens, A. Prost
    CERN, Geneva, Switzerland
  • T. Stadlbauer
    EBG MedAustron, Wr. Neustadt, Austria
 
  Ten different types of kickers, bumpers, and electrostatic and magnetic septa, along with certain power supplies and associated control system components, have been designed in a collaboration between CERN and MedAustron for an ion therapy centre in Wr. Neustadt (Austria). This paper focuses on the status of the special magnets work package and the improvements applied during the production. The design parameters are compared with data from measurements, hardware tests and initial commissioning. The major factors contributing to the successful completion of the work package are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)