Author: Kovermann, J.W.
Paper Title Page
WEPME015 High-gradient Test Results from a CLIC Prototype Accelerating Structure: TD26CC 2285
 
  • W. Wuensch, A. Degiovanni, S. Döbert, W. Farabolini, A. Grudiev, J.W. Kovermann, E. Montesinos, G. Riddone, I. Syratchev, R. Wegner
    CERN, Geneva, Switzerland
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is a of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 100 MV/m and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME016 Experience Operating an X-band High-Power Test Stand at CERN 2288
 
  • W. Wuensch, N. Catalán Lasheras, A. Degiovanni, S. Döbert, W. Farabolini, J.W. Kovermann, G. McMonagle, S.F. Rey, I. Syratchev, L. Timeo
    CERN, Geneva, Switzerland
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  CERN has constructed and is operating a klystron-based X-band test stand, called Xbox-1, dedicated to the high-gradient testing of prototype accelerating structures for CLIC and other applications such as FELs. The test stand has now been in operation for a year and significant progress has been made in understanding the system, improving its reliability, upgrading hardware and implementing automatic algorithms for conditioning the accelerating structures. This experience is reviewed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)