Author: Kononenko, O.
Paper Title Page
WEPRI067 Multi-Physics Analysis of CW Superconducting Cavity for the LCLS-II using ACE3P 2645
 
  • Z. Li, C. Adolphsen, O. Kononenko, T.O. Raubenheimer, C.H. Rivetta, M.C. Ross, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work was supported by the U.S. DOE contract DE-AC02-76SF00515 and used the resources of NERSC at LBNL under US DOE Contract No. DE-AC03-76SF00098.
The LCLS-II linac utilizes superconducting technology operating at continuous wave to accelerate the 1-MHz electron beams to 4 GeV to produce tunable FELs. The TESLA 9-cell superconducting cavity is adopted as the baseline design for the linac. The design gradient is approximately 16 MV/m. The highest operating current is 300 μA. Assuming that the RF power is matched at the highest current, the optimal loaded QL of the cavity is found to be around 4·107. Because of the high QL, the cavity bandwidth approaches the background microphonic detuning, and the performance of the cavity is tightly coupled to the mechanical perturbations of the cavity/cryomodule system. The resulting large phase and amplitude variations in the cavity require active feedback to achieve the 0.01% amplitude and phase stability requirements. To understand the cavity RF response and feedback requirements to the microphonics and Lorentz Force detuning, we have developed a simulation model of the RF-mechanical coupled system using parameters obtained with the multi-physics solver ACE3P. We will present the simulation results of the LCLS-II linac under different power feed scenarios and feedback schemes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)