Author: Kester, O.K.
Paper Title Page
TUPRO043 Status and Computer Simulations for the Front End of the Proton Injector for Fair 1120
 
  • C. Ullmann, R. Berezov, J. Fils, R. Hollinger, V. Ivanova, O.K. Kester, W. Vinzenz
    GSI, Darmstadt, Germany
  • N. Chauvin, O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
 
  FAIR - the international facility for antiproton and ion research – located at GSI in Darmstadt, Germany is one of the largest research projects worldwide. It will provide an antiproton production rate of 7·1010 cooled pbars per hour, which is equivalent to a primary proton beam current of 2·1016 protons per hour. A high intensity proton linac (p-linac) will be built, with an operating rf-frequency of 325 MHz to accelerate a 70 mA proton beam up to 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with an ion beam pulse length of 36 μs[1]. Developed within a joint French-German collaboration - GSI/CEA-SACLAY/IAP – the compact proton linac will be injected by a microwave ion source and a low energy beam transport (LEBT). The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the RFQ (Radio Frequency Quadrupole) within an emittance of 0.3π mm mrad (rms). To check on these parameters computer simulations with TraceWin, IGUN and IBSIMU of the ion extraction and LEBT (Low Energy Beam Transport) are performed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA01 Status of the FAIR Synchrotron Projects SIS18 Upgrade and SIS100 1857
 
  • P.J. Spiller, R. Balß, A. Bleile, L.H.J. Bozyk, J. Ceballos Velasco, T. Eisel, E.S. Fischer, P. Forck, P. Hülsmann, M. Kauschke, O.K. Kester, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, A. Krämer, J.P. Meier, A. Mierau, C. Omet, D. Ondreka, N. Pyka, H. Ramakers, P. Schnizer, H. Welker, St. Wilfert
    GSI, Darmstadt, Germany
  • A. Iluk
    WRUT, Wrocław, Poland
  • H.G. Khodzhibagiyan
    JINR, Dubna, Moscow Region, Russia
  • D. Urner
    FAIR, Darmstadt, Germany
 
  The upgrade of the existing heavy ion synchrotron SIS18 as booster for the FAIR synchrotron SIS100 has been partly completed. With the achieved technical status, a major increase of the accelerated number of heavy ions could be reached. This progress especially demonstrates the feasibilty of acceleration of medium charge state heavy ions with high intensity and and the succesfull control of dynamic vaccuum effects and correlated charge exchange loss. Two further upgrade measures, the installation of additional MA acceleration cavities and the exchange of the main dipole power converter are in progress. For the FAIR synchrotron SIS100 all major components with long production times have been ordered. With several pre-series components, outstanding technical developments have been completed and the readiness for series production reached. The technical project status will be summarized.  
slides icon Slides WEOBA01 [6.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO060 Status of the FAIR Accelerator Facility 2084
 
  • O.K. Kester, W.A. Barth, A. Dolinskyy, F. Hagenbuck, K. Knie, H. Reich-Sprenger, H. Simon, P.J. Spiller, U. Weinrich, M. Winkler
    GSI, Darmstadt, Germany
  • R. Maier, D. Prasuhn
    FZJ, Jülich, Germany
 
  Funding: Supported by the BMBF and state of Hessen
The accelerators of the facility for Antiproton and Ion Research – FAIR are designed to deliver stable and rare isotope beams covering a huge range of intensities and beam energies. The ion and antiproton beams for the experiments will have highest beam quality for cutting edge physics to be conducted within the four research pillars CBM, NuSTAR, APPA and PANDA. The challenges of the accelerator facility to be established are related to the systems comprising magnets, cryo technology, rf-technology, vacuum etc. FAIR will employ heavy ion synchrotrons for highest intensities, antiproton and rare isotope production stations, high resolution separators and several storage rings where beam cooling can be applied. Intense work on test infrastructure for the huge number of superconducting magnets of the FAIR machines is ongoing at GSI and several partner labs. In addition, the GSI accelerator facility is being prepared to serve as injector for the FAIR accelerators. As the construction of the FAIR facility and procurement has started, an overview of the designs, procurements status and infrastructure preparation will be provided.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME028 Systematic Measurement of the Pumping Capabilities of Cryogenic Surfaces 2317
SUSPSNE102   use link to see paper's listing under its alternate paper code  
 
  • F. Chill, O.K. Kester
    IAP, Frankfurt am Main, Germany
  • L.H.J. Bozyk, O.K. Kester, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The quality of the beam vacuum is crucial for the stable operation of synchrotrons with high intensity heavy ions. Cryogenic surfaces are capable of pumping residual gases by cryocondensation until the saturated vapor pressure (SVP) is reached. Even at LHe temperatures the SVP of hydrogen is too high. If the surface coverage is sufficiently low, residual gas can also be bound by cryosorption, yielding in acceptable low pressures. These pumping capabilities can be described by two parameters, both dependent on surface temperature and coverage: The sticking probability (SP), that is the chance of an impinging gas particle to be bound, and the mean sojourn time (MST) of a particle on the surface. To acquire these parameters, an experimental setup is currently built at GSI. It consists of a cryogenic chamber, cooled by a cold head and a warm part with vacuum diagnostics and gas inlet. It allows monitoring the pumping speed and also the equilibrium pressure of the cryogenic part from which the SP and the MST can be deducted. The results will be used to further improve the accuracy of the dynamic vacuum simulations in cryogenic areas of particle accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME029 Development of a Field Emitter-based Extractor Gauge for the Operation in Cryogenic Vacuum Environments 2320
 
  • M. Lotz, O.K. Kester, St. Wilfert
    GSI, Darmstadt, Germany
 
  This paper presents an investigation of a CNT emitter-based extractor gauge which is designed for pressure reading in cryogenic ultra-high vacuum systems. The results show that the modified gauge works well in both room temperature and cryogenic vacuum environments. Furthermore, it could be demonstrated that the modified gauge responds much more sensitive to small pressure fluctuations in cryogenic environments than the same gauge type having a hot-filament cathode.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME100 The Mechanical Design of the BPM Inter-tank Section for P-linac at FAIR 3474
 
  • M.H. Almalki, R. M. Brodhage, P. Forck, W. Kaufmann, O.K. Kester, P. Kowina, T. Sieber
    GSI, Darmstadt, Germany
  • M.H. Almalki, R. M. Brodhage, O.K. Kester
    IAP, Frankfurt am Main, Germany
  • M.H. Almalki
    KACST, Riyadh, Kingdom of Saudi Arabia
  • J. Balaguer
    CEA/IRFU, Gif-sur-Yvette, France
  • P. Girardot, C.S. Simon
    CEA/DSM/IRFU, France
 
  At the planned Proton LINAC at the FAIR facility, four-fold button Beam Position Monitor (BPM) will be installed at 14 locations along the 30 m long FAIR p-LINAC. The LINAC comprises of crossbar H-mode (CH) cavity to accelerate a 70 mA proton beam up to 70 MeV at frequency of 325 MHz. At four locations, the BPMs will be an integral part of the inter-tank section between the CCH and CH cavities within an evacuated housing. As the BPM centre is only 48 mm apart from the upstream cavity boundary, the rf-background at the BPM position, generated by the cavity must be evaluated. In this paper the mechanical design of the BPM for the inter-tank section is presented and the rf-noise at the BPM location is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI081 A Transverse Electron Target for Heavy Ion Storage Rings 3958
 
  • S. Geyer, O.K. Kester, O. Meusel
    IAP, Frankfurt am Main, Germany
  • O.K. Kester
    GSI, Darmstadt, Germany
 
  A transverse electron target already constructed is under investigation for the application in storage rings at the FAIR facility. Using a sheet beam of free electrons in a crossed beam geometry promises a high energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width of 5 mm in the interaction region with electron densities of up to 109 electrons/cm3. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV and a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions. Also the ion optical behaviour of the target was investigated numerically. The target is integrated in a test bench to study the performance of the electron gun and the electron beam optics. The installed volume ion source delivers light ions and molecules for characterization of the target performance by measuring charge changing processes. Subsequently the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements. An overview of the project status will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)