Author: Kaya, C.     [Kaya, Ç.]
Paper Title Page
MOPRO097 Status of the Turkish Synchrotron Radiation Source Machine Design 313
 
  • Z. Nergiz, H. Aksakal
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
  • A.A. Aksoy, Ç. Kaya
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • Ö.K. Öztürk
    Dogus University, Istanbul, Turkey
 
  Funding: Work is supported by Ministry of Development of Turkey with Grand No: DPT2006K-120470
Turkish synchrotron radiation source named TURKAY, is a part of the TAC (Turkish Accelerator Center) Project , is at conceptual design process. The radiation properties of a SR sources are strongly depends on the magnetic lattice of the storage ring. The storage ring is designed to obtain low emittance electron beam at 3 GeV energy. Optimization of the lattice properties, including the non-linear dynamics, is described in detail. Radiation properties are calculated by the example of some existing undulators from the other SR facilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI045 Beam Diagnostics E-GUN Test Stand at TARLA 704
 
  • Ç. Kaya, A.A. Aksoy, A. Aydin, V. Karakilic, Ö. Karslı, E. Kazancı, B. Koc, S. Kuday, E.Ç. Polat, I. Sara, M. Yildiz
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • S. Özkorucuklu
    Istanbul University, Istanbul, Turkey
 
  Funding: Work supported by Turkish State Planning Organization (Grant No: DPT2006K-120470)
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility, which is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of totally normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. Continuous wave (CW) electron beam will provided by TARLA thermionic electron gun (E-GUN). Various aspects of the Thermionic EGUN test stand to deliver the necessary electron beam in terms of bunch charge, current, energy, emittance and profile for the beam diagnostic will be discussed. Primarily measurements results of electron beam energy loss and transverse orbit will be shown as well as beam image and shape measurements.
On behalf of TARLA Collaboration
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI044 Final Structure and Design Parameters of TARLA RF System 2577
 
  • Ö. Karslı, A.A. Aksoy, Ç. Kaya, İ.B. Koc, E.Ç. Polat, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • M. Doğan
    Dogus University, Istanbul, Turkey
  • S. Özkorucuklu
    Istanbul University, Istanbul, Turkey
 
  Funding: Work supported by Turkish Ministry of Development (Grant No: DPT2006K-120470)
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is an oscillator mode IR-FEL facility which is under construction since 2011. ELBE licensed superconducting modules housing TESLA RF cavities have been manufacturing for one year and the first module will be delivered in 2015. He Cryogenic System has also started to be manufacturing at similar time with the accelerator structures. It will be delivered in 2014. High Power RF amplifiers are started to tender procedures and delivery time is planning as 2015. The installation of high power transmission lines have to be completed at the same time with the delivery date of HPRF amplifiers to test the cavities and amplifiers. In this study, the final structural design of high power RF transmission lines and design parameters of RF amplifiers for TARLA is discussed.
On behalf of TARLA Collaboration, www.tarla.org.tr
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO026 Design Parameters and Current Status of the TARLA Project 2918
 
  • A.A. Aksoy, Ö. Karslı, Ç. Kaya, E. Kazancı, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • P. Arıkan
    Gazi University, Faculty of Arts and Sciences, Teknikokullar, Ankara, Turkey
  • S. Özkorucuklu
    Istanbul University, Istanbul, Turkey
 
  Funding: Work is supported by Ministry of Development of Turkey with Grand No: DPT2006K-120470
The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) will operate two InfraRed Free Electron Lasers (IR-FEL) covering the range of 3-250 microns. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating ELBE modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. In this paper, we discuss design goals of the project and present status and road map of the project.
On behalf of TARLA Team
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO127 Current Status of TARLA Control System 3192
 
  • E. Kazancı, A.A. Aksoy, A. Aydin, Ç. Kaya, B. Tonga, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • S. Özkorucuklu
    Istanbul University, Istanbul, Turkey
 
  Funding: This study was funded by Ministry of Development of Turkey by grant id DPT2006K-120470
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is a Free Electron Laser (FEL) facility designed to generate Free Electron Laser (FEL) in 3-250 um wavelength range, based on four 9-cell Super Conducting (SC) cavities with 10MeV/m gradient each. TARLA electron gun has been in operation since 2012. Control system studies with EPICS are being run as test stand control and permanent system and each are running as individual projects while test stand control is in stable revision. The aim of the system design is to create a fast and reliable control system which is easy to operate and extensible for future upgrades/improvements. Now, the development and implementation of control system is ongoing in a parallel manner with the rest of the accelerator as well as the architectural design, In this study, the permanent and the test stand control systems of TARLA will be discussed.
On behalf of TARLA Team
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME109 EOS at CW Beam Operation at ELBE 3492
 
  • Ch. Schneider, M. Gensch, M. Kuntzsch, P. Michel, W. Seidel
    HZDR, Dresden, Germany
  • P.E. Evtushenko
    JLab, Newport News, Virginia, USA
  • Ç. Kaya
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • A. Shemmary, N. Stojanovic
    DESY, Hamburg, Germany
 
  The ELBE accelerator is a super conduction electron cw machine located at the Helmholtz Center Dresden Rossendorf Germany with 1 mA current, now tested for up to 2 mA. Besides other important diagnostics for setting up the machine for user beam time and further improvement of the machine – a THz source is momentary under commissioning – a EOS measuring station for bunch length measurements is locate right behind the second super conducting Linac. Measuring with a crystal in the vicinity of an up to 2 mA cw beam implies higher beam loss and also higher radiation exposure of the crystal and hence also a safety risk for the UHV conditions of the super conducting cavities in the case of crystal damage. Therefore the EOS measuring principle is adapted to larger measuring distances and also for beam requirements with lower bunch charge at ELBE. A description of the setup, considerations of special boundary conditions and as well results for 13 MHz cw beam operation are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)