Author: Karantzoulis, E.
Paper Title Page
MOPRO075 Evolution of Elettra towards an Ultimate Light Source 258
 
  • E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Considerations of possible lattices aiming to transform Elettra into an Ultimate Light Source (ULS), the best solution found and some considerations regarding the accelerator components are presented and discussed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO076 Elettra Status and Upgrades 261
 
  • E. Karantzoulis, A. Carniel, S. Krecic
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The operational status of the Italian 2.4/2.0 GeV third generation light source Elettra is presented together with the latest studies and upgrades.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO077 Betatron Coupling Numerical Study at Elettra 264
 
  • S. Di Mitri, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra lacks skew quadrupoles and the coupling is controlled via the vertical orbit. Elettra has typical operational coupling of 1%, values as low as 0.3% were reached but however not easily established and reproducible. In order to control the coupling in a reproducible manner skew quadrupoles must be installed. Simulations of the betatron coupling and correction for the Elettra synchrotron light source were performed and are here presented. The numerical study is based on measured machine misalignments and carried out with the ELEGANT particle tracking code. The inclusion of families of skew quadrupoles in the existing lattice is investigated and shown to be conclusive for the coupling correction at the level of 0.1%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO090 Special Elettra Corrector Magnets 1247
 
  • E. Karantzoulis, D. Castronovo, S. Krecic, G.L. Loda
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  To fully control the beam position source point for the dipole beam lines additional correctors are needed. The space available however is minimal and no alternative solution (e.g. additional coils on quadrupoles or sextupoles) is possible making the design of such a magnet very challenging. The design, installation and performance of those special magnets is presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI075 Beam Orbit Stability at Elettra 1742
 
  • G. Gaio, S. Cleva, E. Karantzoulis, S. Krecic, M. Lonza
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The top-up operation established since 2010 at the Elettra third-generation synchrotron light source has solved the problems related to thermal drifts and beam current dependence, and a series of feedback loops acting on the machine optics and radio-frequency systems made easier to setup and operate the ring. Those systems together with the fast orbit feedback in operation since 2007, contributed to a very high electron beam orbit stability. A description of the active systems and their performance, future perspectives as well as some still open issues will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI085 The Elettra 3.5 T Superconducting Wiggler Refurbishment 2687
 
  • D. Zangrando, R. Bracco, D. Castronovo, M. Cautero, E. Karantzoulis, S. Krecic, G.L. Loda, D. Millo, L. Pivetta, G. Scalamera, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • S.V. Khrushchev, N.A. Mezentsev, V.A. Shkaruba, V.M. Syrovatin, O.A. Tarasenko, V.M. Tsukanov, A.A. Volkov
    BINP SB RAS, Novosibirsk, Russia
 
  A 3.5 Tesla 64 mm period superconducting wiggler (SCW) was constructed by the Russian Budker Institute of Novosibirsk (BINP) and installed in the Elettra storage ring as a photon source for the second X-ray diffraction beamline in November 2002, but never used due to the lack of the funding required for the beamline construction. About three years ago, the beamline construction was finally funded together with the refurbishment of the SCW. This upgrade, that was necessary in order to make the SCW operations compatible with the top up mode of the storage ring aimed in a drastic reduction of the liquid helium consumption by means of replacing the cryostat with a new version. At the same time the upgrade aimed as well to improve the reliability of the cryostat, to update the control system and to verify the magnetic field performance after a very long time of inactivity. In this paper we present and discuss the performances of the SCW following its refurbishment carried out by BINP team and its re-commissioning in the Elettra storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME128 Fast Beam Diagnostics for Third-Generation Synchrotrons by Means of Novel Diamond-based Photon BPMs 3541
 
  • M. Antonelli, G. Cautero, I. Cudin, D.M. Eichert, D. Giuressi, W.H. Jark, E. Karantzoulis, S. Lizzit, R.H. Menk
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. De Sio, E. Pace
    Università degli Studi di Firenze, Firenze, Italy
  • M. Di Fraia
    Università degli Studi di Trieste, Trieste, Italy
 
  In the past years electron beam stability has been intensively addressed In new-generation Synchrotron Radiation (SR) sources. Many SR machines have been equipped with a Fast Orbit Feedback (FOFB) based on electron Beam-Position Monitors (eBPMs). Also photon Beam-Position Monitors (pBPMs) are a useful tool for keeping the electron beam under control by simultaneously monitoring position and intensity of the delivered radiation; the machine control system can take advantage of this information in order to improving the electron beam stability. At Elettra, a diagnostic beamline, which utilizes a couple of single-crystal CVD diamond detectors as fast pBPMs, has been built and inserted into a bending-magnet front end. Preliminary tests carried out during normal machine operations show that this system allows to monitor the beam position with sub-micrometric precision at the demanding readout rates required by the FOFB. Therefore, this diagnostic line represents a demonstrator for future implementation of pBPMs at several bending-magnet front ends of Elettra.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)