Author: Jin, H.
Paper Title Page
THPRO007 Beam-based Alignment in the European XFEL SASE1 2867
 
  • H. Jin, W. Decking, T. Limberg
    DESY, Hamburg, Germany
 
  The European X-ray Free Electron Laser (E-XFEL) provides an ultra-short and high-brilliant photon pulses of spatially coherent X-rays with wavelengths down to 0.05 nm by using three undulator systems. Within these undulator systems, the orbit trajectory is required to be straight to a few micron over each gain length, so that the photon beam is capable of overlapping efficiently with the electron beam. However, this requirement is not obtainable with ordinary mechanical alignment methods. For this reason, a beam-based alignment (BBA) method using BPM readings of different beam energies is applied to the E-XFEL SASE1 undulators. In this report, we describe the BBA simulation for SASE1 including alignment errors of quadrupoles and BPMs. After correction, the desired range of the orbit trajectory is attained with high confidence. In addition, to identify the reliability of an aligned orbit trajectory acquired from the BBA simulation, we present here the SASE FEL radiation simulation, in which we observe a slight decrease of radiation energy and power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)