Author: Jan, J.C.
Paper Title Page
TUOCB03 Performance of Elliptical Polarization Undulators at TPS 987
 
  • T.Y. Chung, C.-H. Chang, C.H. Chang, J.C. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Design, assembly, field shimming, and performance of APPLE-II type undulators in NSRRC are described in this article. Essentially, the mechanical error has been well controlled based on the optimize design and mechanical arts. Effectively initial sorting of permanent magnets is developed to minimize several adverse effects, such as magnetic inhomogeneities, no perfection geometry of blocks, and mechanical frame issue, those challenge the sorting expectation, especially for an adjusted polarization undulator. The sorting algorithm shows a quantitative prediction of magnetic field and is verified by measurement results. 2D virtual shimming algorithm has been developed to optimize field quality, including multipole, phase error, and particle trajectory. We describe the considering of each procedure and demonstrate the optimization together with measurement results.  
slides icon Slides TUOCB03 [1.503 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOCB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO111 Summary of Field Quality of TPS Lattice Magnets 1310
 
  • J.C. Jan, C.-H. Chang, Y.L. Chu, T.Y. Chung, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
 
  A modern 3-GeV synchrotron radiation light source is under construction in NSRRC, named Taiwan Photon Source (TPS). Great quality of magnets is required to control the electron-beam in the required orbit in the storage ring (SR) and the booster ring (BR) of TPS. The mechanical and magnet field performance of these magnets were fully inspected in NSRRC. The standard deviation of the integral field strength of 48 SR-dipole magnets is better than 0.1%. The integral multipoles and offsets of the magnetic center of the 240 SR quadrupole and 168 SR sextupole magnets conform to strict specifications. The field characteristics of the BR combined-function dipole magnet were analyzed with an average of processing raw data. The standard deviation of the field strength of 54 BR dipole-magnets is better than 0.2%. The field quality of 36 BR pure quadrupole and 48 BR combined-function quadrupole magnets are accepted to meet the requirement of the booster ring. The field strength and multipole errors of 24 BR sextupole magnets were also examined. The detailed magnetic performance and technical issues of lattice magnets are discussed in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)