Author: Jacquet, D.
Paper Title Page
MOPRO031 Abort Gap Cleaning for LHC Run 2 138
 
  • J.A. Uythoven, A. Boccardi, E. Bravin, B. Goddard, G.H. Hemelsoet, W. Höfle, D. Jacquet, V. Kain, S. Mazzoni, M. Meddahi, D. Valuch
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO043 Handling 1 MW Losses with the LHC Collimation System 174
 
  • B. Salvachua, R. Bruce, F. Carra, M. Cauchi, E.B. Holzer, W. Höfle, D. Jacquet, L. Lari, D. Mirarchi, E. Nebot Del Busto, S. Redaelli, A. Rossi, M. Sapinski, R. Schmidt, G. Valentino, D. Valuch, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • M. Cauchi
    UoM, Msida, Malta
  • L. Lari
    IFIC, Valencia, Spain
 
  Funding: Research supported by EU FP7 HiLumi LHC (Grant agree. 284404)
The LHC superconducting magnets in the dispersion suppressor of IR7 are the most exposed to beam losses leaking from the betatron collimation system and represent the main limitation for the halo cleaning. In 2013, quench tests were performed at 4 TeV to improve the quench limit estimates, which determine the maximum allowed beam loss rate for a given collimation cleaning. The main goal of the collimation quench test was to try to quench the magnets by increasing losses at the collimators. Losses of up to 1 MW over a few seconds were generated by blowing up the beam, achieving total losses of about 5.8 MJ. These controlled losses exceeded by a factor 2 the collimation design value, and the magnets did not quench.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)