Author: Iwasaki, M.
Paper Title Page
TUPRI109 Construction and Commissioning of Event Timing System at SuperKEKB 1829
 
  • H. Kaji, K. Furukawa, M. Iwasaki, E. Kikutani, T. Kobayashi, F. Miyahara, T.T. Nakamura, M. Satoh, M. Suetake, M. Tobiyama
    KEK, Ibaraki, Japan
  • T. Kudo, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • T. Okazaki
    EJIT, Hitachi, Ibaraki, Japan
 
  The Event Timing System of Injector Linac at KEK is upgraded to satisfy the new requirements for the SuperKEKB project. After finishing the design and feasibility studies*, we have constructed the new system at Main Trigger Station of Linac. The new functions are developed in this system to perform the injection control of positrons with the newly constructed damping ring. Besides, we integrate the capability to adjust the trigger timing just 20 ms before injection so that the injection RF-bucket of the ring can be decided at the last minute. Now, both the new system and the current working system are operational at Main Trigger Station. This is important for the smooth taking over of Event Timing System. Even during the construction period, Linac must be operated to provide beams into the two light source rings. In this situation, we can carry out enough tests with the actual condition. These tests do not disturb the regular operation and brush up the Event Timing System to enable the quick startup of the SuperKEKB operation. We report about the detailed configuration of the new system and its commissioning performed in the 2014 spring run period.
* H. Kaji et al., "Upgrade of Event Timing System at SuperKEKB",
proceedings of ICALEPCS13, San Francisco, USA, October 6-11, 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI087 Magnetic Field Measurement System for the SuperKEKB Final Focus Superconducting Magnets 2693
 
  • N. Ohuchi, Y. Arimoto, M. Iwasaki, M.K. Kawai, Y. Kondo, Y. Makida, K. Tsuchiya, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
 
  SuperKEKB are now being constructed with a target luminosity of 8×1035 which is 40 times higher than KEKB. This luminosity can be achieved by the "Nano-Beam" scheme, in which both beams should be squeezed to about 50 nm at the beam interaction point, IP. The beam final focusing system consists of 8 superconducting quadrupole magnets, 4 superconducting solenoids and 43 superconducting corrector coils. The magnetic field measurement systems with the vertical cryostats were designed and constructed for performing the acceptance test of these magnets at 4 K. The field measurements are performed by the 6 different harmonic coils and a Hall probe. The higher order multi-pole field distributions along the magnet axes are very important for the beam operation, and then these distributions are measured with the 20 mm long harmonic coils. The integral fields of quadrupole magnets are measured with the 600 mm long harmonic coils. We will describe the magnetic field measurement system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO109 Design and Status of the SuperKEKB Accelerator Control Network System 3150
 
  • M. Iwasaki, K. Furukawa, T.T. Nakamura, T. Obina, S. Sasaki, M. Satoh
    KEK, Ibaraki, Japan
  • T. Aoyama, T. Nakamura
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  We have upgraded the accelerator control network system for SuperKEKB, the upgrade of the KEKB asymmetric energy e+e collider for the next generation B-factory experiment in Japan. For SuperKEKB, the accelerator control network system with the higher performance of the wider bandwidth data transfer, and more reliable and redundant configuration, is required, to ensure the robust operations under the 40 times higher luminosity. We install the 10 gigabit Ethernet (10GbE) network switches for the wider network bandwidth and optical cables to construct the redundant network. We reconfigure the network design to connect the accelerator control network and the KEK laboratory network to enhance the security. For the beamline construction and the accelerator components maintenance, we install the new wireless network system consists with the Leaky Coaxial (LCX) cable antennas and collinear antennas, which have good radiation hardness of >1MGy, into the 3 km circumference accelerator tunnel. In this paper, we describe the design and current status of the SuperKEKB accelerator control network system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)