Author: Inagaki, R.
Paper Title Page
MOPRI035 Development of the Photocathode LiTi2O4 and Evaluations of the Initial Emittance 673
 
  • R. Inagaki, M. Hosaka, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya, Japan
  • T. Hitosugi, S. Shiraki
    Tohoku Uneversity, WPI-AIMR, Sendai, Japan
  • E. Kako, Y. Kobayashi, S. Yamaguchi
    KEK, Ibaraki, Japan
  • M. Katoh, T. Konomi, T. Tokushi
    UVSOR, Okazaki, Japan
  • Y. Okano
    IMS, Okazaki, Japan
 
  In UVSOR, the X-ray free electron laser (XFEL) based on linear accelerator with high pulse repetition about 1MHz has been designed as a candidate for the next radiation sources. We thought a combination of superconducting RF cavity and photocathode is an optimal electron gun for the new accelerator. For this electron gun, we propose a back-illuminated multi-alkali* photocathode with transparent superconductor LiTi2O4**. The reason for using LiTi2O4 is to reflect RF by using feature of penetration depth of superconductor, which is defined from London equation. This feature protects optical components from RF damage. However, LiTi2O4 is a new material and properties are not clear. We have measured the basic properties of this photocathode, such as magnetic susceptibility measurement and photoelectron spectrometry, etc. In this conference, we will explain the detail of the concept and advantage of this cathode, and show the result measured about the basic properties of this photocathode focusing on the initial emittance measurement.
* A. V. Lyashenko et al. JINST 4 P07005 (2009)
** Kumatani et al. APL 101 (2012) 123103″
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)