Author: Huang, Y.T.
Paper Title Page
MOPME078 Relief of an Electric Field via a Cone Structure 550
 
  • Y.T. Huang, C.K. Chan, C.S. Chen, J.-R. Chen, G.-Y. Hsiung, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  A terminated power cable is typically applied not only for terminated ends but also to connect two or more cables. The electric field inside the insulation layer becomes disturbed when a coaxial cable structure is broken and the electric stress increases near the ground edge. A structure of cone type is a major method to alter the lines of equi- potential and to relieve the electric stress around the ground. The dimensions of the cone depend on the cable structure. In this paper we introduce a way to calculate the displacement of equi-potential lines when a cone is brought into a coaxial cable, RG220, and then determine a suitable angle and length of the cone, which are important factors to withstand tens of kV and even greater. The corresponding high-voltage tests are also presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME079 The DC and AC Withstands Test for TPS Booster Injection Kicker 554
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, H.H. Chen, J.-R. Chen, Y.T. Huang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  TPS requires highly precise and stable pulsed magnets for top-up mode operation. One injection and two extraction in vacuum kicker magnets in the booster ring are designed and noticed to minimize driving voltage. The HV insulation for magnet itself and vacuum feedthrough need to be tested. A DC withstand voltage tester MUSASHI 3802 (Model: IP-701G) is used to test the DC breakdown voltage, which the maximum driving voltage is 37 kV. And the AC withstand voltage tester was also test the AC breakdown voltage. Thicker than 10 mm ceramic plate could effectively avoid the breakdown occurred with 37 kV DC charging. Thus HV withstand voltage will be higher in vacuum chamber and the insulation with HV will not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO014 The Installations of the In-vacuum Kicker System of the Booster Injection Section in TPS 1971
 
  • C.S. Chen, C.K. Chan, K.H. Hsu, Y.T. Huang, Y.-H. Liu, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  The installations of the In-Vacuum kicker system of the booster injection in TPS are presented in this article. Due to the more than 20 kV operation voltages and precise positioning requirements, the insulations and positioning systems are designed with more attentions. Although increasing the gap between high potential parts and ground could provide enough withstanding voltage, on the other hand, the insufficient space and vacuum requirements limit the sizes of insulators. Therefore, lots of effort have been done to deal with these conflicts. All assembling processes will be described in this paper as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME055 Residual Gas in the 14 m-long Aluminium Vacuum System of the Storage Ring of Taiwan Photon Source: toward Ultra-high Vacuum 2396
 
  • T.Y. Lee, C.K. Chan, C.H. Chang, C.-C. Chang, S.W. Chang, Y.P. Chang, B.Y. Chen, J.-R. Chen, Z.W. Chen, C.M. Cheng, Y.T. Cheng, G.-Y. Hsiung, S-N. Hsu, H.P. Hsueh, C.S. Huang, Y.T. Huang, L.H. Wu, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  In the Taiwan Photon Source project, the storage ring includes 24 sectors (each of length 14 m) of an aluminium vacuum chamber system. The design, manufacture, cleaning, welding and assembly of the vacuum components were undertaken by the NSRRC vacuum group. The ultimate objective is to attain a leak-tight, ultra-high vacuum and a vacuum system with a small rate of outgassing. In this work, we used a residual-gas analyzer (RGA) to analyze the variation of residual gas during proceeding toward ultra-high vacuum. This process, which led the pressure down to ~10-11 torr, includes baking, operation of ion pumps, degassing of hot cathode gauges and activation of NEG pumps. When a sufficiently small low pressure is attained, the ion pumps are turned off to test the building up of pressure. The outgassing property and the variation of the residual gas of the aluminium chamber and the ion pumps can be measured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)