Author: Huang, X.
Paper Title Page
MOPRO104 Low-Energy Intrabeam Scattering Measurements at the Spear3 Storage Ring 334
 
  • K. Tian, W.J. Corbett, X. Huang, J.A. Safranek
    SLAC, Menlo Park, California, USA
 
  Intrabeam scattering (IBS) can cause emittance growth in diffraction limited light sources. At lower beam energy, the IBS effect is expected to be more pronounced. To study these effects we have developed a series of low energy lattices in SPEAR3 with beam energy ranging from 3GeV to 700MeV. The horizontal beam size and bunch length are measured as a function of beam energy and compared with theoretic calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO105 Study of Ultra-low Emittance Design for SPEAR3 337
 
  • M.-H. Wang, R.O. Hettel, X. Huang, T. Rabedeau, J.A. Safranek, K. Tian
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US Department of Energy under contract number: DE-AC02-76SF00515
Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, small alpha and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the operation of SPEAR3, we are looking into the possibility of converting SPEAR3 to a multi-bend achromat storage ring within its site constraint.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)