Author: Hartl, I.
Paper Title Page
TUPME047 SINBAD - A Proposal for a Dedicated Accelerator Research Facility at DESY 1466
 
  • R.W. Aßmann, C. Behrens, R. Brinkmann, U. Dorda, K. Flöttmann, B. Foster, J. Grebenyuk, I. Hartl, M. Hüning, Y.C. Nie, J. Osterhoff, A. Rühl, H. Schlarb, B. Schmidt
    DESY, Hamburg, Germany
  • M. Groß, B. Marchetti, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • F.J. Grüner, B. Hidding, A.R. Maier
    Uni HH, Hamburg, Germany
  • F.X. Kärtner, B. Zeitler
    CFEL, Hamburg, Germany
  • A.-S. Müller, M. Schuh
    KIT, Karlsruhe, Germany
 
  A new, dedicated accelerator research facility SINBAD (Short INnovative Bunches and Accelerators at DESY) is proposed. This facility is aimed at promoting two major goals: (1) Short electron bunches for ultra-fast science. (2) Construction of a plasma accelerator module with useable beam quality. Research and development on these topics is presently ongoing at various places at DESY, as add-on experiments at operational facilities. The two research goals are intimately connected: short bunches and precise femtosecond timing are requirements for developing a plasma accelerator module. The scientific case of a dedicated facility for accelerator research at DESY is discussed. Further options are mentioned, like the use of a 1 GeV beam from Linac2 for FEL studies and the setup of an attosecond radiation source with advanced technology. The presently planned conversion of the DORIS storage ring and its central halls into the SINBAD facility is described. The available space will allow setting up several independent experiments with a cost-effective use of the same infrastructure. National and international contributions and proposals can be envisaged.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO055 Development of a Quasi 3-D Ellipsoidal Photo Cathode Laser System for PITZ 2069
 
  • T. Rublack, M. Khojoyan, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A.V. Andrianov, E. Gacheva, E. Khazanov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • I. Hartl, S. Schreiber
    DESY, Hamburg, Germany
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: Funded by the German Federal Ministry of Education and Research (BMBF) project 05K10CHE in the framework of the German-Russian collaboration "Development and Use of Accelerator-Based Photon Sources".
3-D ellipsoidal photo cathode laser pulses are considered as the next step in optimization of photo injectors required for a successful operation of linac based free electron lasers. Significant improvements in electron beam emittance obtained from the beam dynamics simulations using such laser pulses compared to the conventional cylindrical pulses motivated the experimental studies in order to develop a laser system for quasi 3-D ellipsoidal pulses. The Institute of Applied Physics (Nizhny Novgorod, Russia) in collaboration with the Joint Institute of Nuclear Research (Dubna, Russia) and the Photo Injector Test facility at DESY, Zeuthen site (PITZ) is developing such a photo cathode laser system. Experimental tests of the laser system with photoelectron beam production are planned at PITZ. The laser pulse shaping is realized using the spatial light modulator technique. The laser system is capable of pulse train generation. First cross-correlation measurements were done demonstrating in principle the ability to generate and measure quasi ellipsoidal laser pulses. In this contribution the overall set-up, working principle and the actual progress of the development will be reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)