Author: Gomes Namora, V.
Paper Title Page
MOPME074 High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets 541
 
  • M.J. Barnes, P. Adraktas, G. Bregliozzi, S. Calatroni, P. Costa Pinto, H.A. Day, L. Ducimetière, V. Gomes Namora, T. Kramer, V. Mertens, M. Taborelli
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME075 Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals 544
 
  • M.J. Barnes, S. Bouleghlimat, L. Ducimetière, M. Garlaschè, V. Gomes Namora, T. Kramer, R. Noulibos, Y. Sillanoli, Z.K. Sobiech, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated for improving emissivity without degrading vacuum properties. In addition initial concepts for improved cooling are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)