Author: Garoby, R.
Paper Title Page
THPME021 Designs of High-intensity Proton Linacs with Non-equipartitioning 3262
 
  • C. Meng, Z. Li, S. Pei, B. Sun, J.Y. Tang, F. Yan
    IHEP, Beijing, People's Republic of China
  • R. Garoby, F. Gerigk, A.M. Lombardi
    CERN, Geneva, Switzerland
 
  Superconducting technology is playing more and more important roles in high-power proton linacs. Periodic phase advance less than 90 degrees and equipartitioning design are considered very important principles in linac design. Due to the very high construction and operation costs, it is very important in optimizing the design to lower the costs. In usual, the longitudinal emittance is larger from the front-end, thus the transverse phase advance is designed to have a larger value. However, with the technical advancement, higher accelerating field can be obtained. In order to take this advantage, it is of much interest in increasing the longitudinal phase advance to shorten the linac or reduce the cost. In this paper, we present the design method that keeping the longitudinal phase advance as large as possible but smaller than 90 degree to maximize the use of the available accelerating gradient. Even though this method does not observe the equipartitioning condition, we can also obtain very good beam dynamics results by placing the tunes in resonant-free regions. In this paper, the design and simulation results by applying this method to the SPL and China-ADS linac will be present.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME070 Status of the LIU Project at CERN 3397
 
  • K. Hanke, H. Damerau, A. Deleu, A. Funken, R. Garoby, S.S. Gilardoni, N. Gilbert, B. Goddard, E.B. Holzer, A.M. Lombardi, D. Manglunki, M. Meddahi, B. Mikulec, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  CERN has put in place an ambitious improvement programme to make the injector chain of the LHC capable of supplying the high intensity and high brightness beams requested by the High-Luminosity LHC (HL-LHC) project. The LHC Injectors Upgrade (LIU) project comprises a new Linac (Linac4) as well as major upgrades and renovations of the PSB, PS and SPS synchrotrons. The heavy ion injector chain is also included, adding Linac3 and LEIR to the list of accelerators concerned. This paper reports on the work completed during the first long LHC shutdown, and outlines the further upgrade path.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)