Author: Garion, C.
Paper Title Page
WEPME043 Design and Qualification of Transparent Beam Vacuum Chamber Supports for the LHCb Experiment 2363
 
  • J.L. Bosch, P. Chiggiato, C. Garion
    CERN, Geneva, Switzerland
 
  Beryllium beam vacuum chambers pass through the aperture of the large dipole magnet and particle acceptance region of the LHCb experiment, coaxial to the LHC beam. At the interior of the magnet, a system of rods and cables supports the chambers, holding them rigidly in place, in opposition to the vacuum forces caused by their conical geometry. In the scope of the current upgrade program, the steel and aluminium structural components are replaced by a newly designed system, making use of Beryllium, in addition to a number of organic materials, and are optimized for overall transparency to incident particles. Presented in this paper are the design criteria, along with the unique design developments carried out at CERN, and furthermore, a description of the technologies procured from industrial partners, specifically in obtaining the best solution for the cable components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME048 Preliminary Design of the HiLumi-LHC Triplet Area Beam Screen 2378
 
  • R. Kersevan, C. Garion, N. Kos
    CERN, Geneva, Switzerland
 
  The so-called beam screen (BS) is a proven solution for intercepting the thermal loads caused by the circulating beams in the cryogenically-cooled sections of the LHC and minimizing dynamic vacuum effects. The new triplet area foreseen for the HiLumi-LHC machine upgrade has the additional feature of needing internal tungsten shields to reduce the amount of collision debris which is deflected by the high-gradient triplet magnets towards the superconducting magnets' cold masses and coils. The very aggressive optics design, based on large beam separations, calls for a maximum of physical space to remain available to the counter rotating beams in the common BS. This places severe constraints to the fabrication and installation tolerances of the BS itself, in addition to affecting the design and routing of the cryogenic lines in the area. The latest version of the BS design will be shown and discussed, together with future plans for testing materials, fabrication procedures, and installation.
* The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)