Author: Fenner, M.
Paper Title Page
TUPRI107 Compact MTCA.4 Based Laser Synchronization 1823
 
  • M. Felber, Ł. Butkowski, H.T. Duhme, M. Fenner, C. Gerth, U. Mavrič, P. Peier, H. Schlarb, B. Steffen
    DESY, Hamburg, Germany
  • T. Kozak, P. Prędki, K.P. Przygoda
    TUL-DMCS, Łódź, Poland
 
  In this paper we present a compact and efficient approach for laser synchronization based on MTCA.4 platform. Laser pulses are converted to the RF signals using a photo-diode detector. The RF section performs filtering, amplification and down-conversion of a narrowband, CW signal. The resulting IF signal is sampled by a high resolution digitizer on the AMC (Advanced Mezzanine Card) side and transported via point-to-point links to an adjacent AMC board. The processing electronics on this board drives a digital-to-analog converter on the rear-side. The analog signal is then filtered and amplified by a high voltage power amplifier which drives the piezo stretcher in the laser. Some preliminary results of laser to RF locking with such a scheme are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME069 Performance of a Compact LLRF System using Analog RF Backplane in MTCA.4 Crates 2438
 
  • U. Mavrič, M. Fenner, M. Hoffmann, F. Ludwig, A.T. Rosner, H. Schlarb
    DESY, Hamburg, Germany
  • K. Czuba, T.P. Leśniak
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • A. Rohlev
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In order to increase system compactness, mitigate cabling problems, increase rack space, minimize points of failure in the system and reduce digital distortion leakage into the sensitive analog signals, the concept of the RF backplane located in the rear section of the MTCA.4 crate has been introduced. Besides signal distribution, the concept includes a signal generation module and backplane management module. The generation and splitting of the analog signals is taking place in slots 15 and 14 on the rear side in theμLO generation module (uLOG). This module generates the local oscillator signal, the clocks and feeds through the master reference signal over the RF backplane to the slots. In this paper we present the recent results of such system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)