Author: Fatehi, S.
Paper Title Page
MOPRO069 Progress Status of the Iranian Light Source Facility Laboratory 240
 
  • J. Rahighi, E. Ahmadi, H. Ajam, M. Akbari, S. Amiri, J. Dehghani, R. Eghbali, S. Fatehi, M. Fereidani, A. Gholampour, A. Iraji, M. Jafarzadeh, B. Kamkari, S. Kashani, P. Khodadoost, H. Khosroabadi, M. Lamehi, M. Moradi, H. Oveisi, S. Pirani, M. Rahimi, N. Ranjbar, R. Rasoli, M. Razazian, A. Sadeghipanah, F. Saeidi, R. Safian, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, A. Shahveh, Z. Shahveh, A. Shahverdi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • H. Ghasem
    IPM, Tehran, Iran
 
  The Iranian Light Source Facility Project (ILSF) is a 3 GeV third generation light source with a current of 400 mA which will be built on a land of 50 hectares area in the city of Qazvin, located 150 km West of Tehran. ILSF conceptual design report, CDR, was published in October 2012. To have a competitive leading position in the future, 489.6 m storage ring of ILSF is designed to emphasize on small emittance electron beam( 0.93 nm-rad), high photon flux density, brightness, stability and reliability. Moreover, 40% of 489.6 m ring circumference is straight sections (14×8 m+ 14×6 m) which are long enough for the commonly used insertion devices. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, Storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO088 ILSF Booster Magnets for the High Field Lattice 1244
 
  • S. Fatehi, H. Ghasem
    IPM, Tehran, Iran
 
  Iranian light source facility is a 3 GeV storage ring. There are currently two choices for the lattice; high field and low field lattices. In this paper magnet design of the high field booster ring is discussed. High field booster ring is supposed to work at injection energy of 150KeV and guide the electrons to the ring energy 3GeV. It consist of 48 combined bending magnet in 1 type and 92 quadrupole in 6 families .Using two dimensional codes POISSON and FEMM, a pole and yoke geometry was designed, also cooling and electrical calculations have been done and mechanical drawings were sketched
samira.fatehi@ipm.ir
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)