Author: Esberg, J.
Paper Title Page
MOPME048 CLIC Decelerator - Machine Protection 482
 
  • L.M. Hein, J. Esberg, M. Jonker
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider CLIC is based on a four beam scheme, two colliding beams (main beams) and two drive beams, which are used to accelerate the main beams. The intended drive beam parameters exceed the "safe beam" threshold by a factor of 100. Hence, in case of a beam impact serious structural damages of the accelerator equipment are expected. In order to avoid structural damages caused by the drive beam detailed studies of its beam dynamics are on-going. In this paper the major characteristics of the drive-beam beam-dynamics and preliminary machine protection results are summarised.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME049 Design Considerations of the Final Turnaround Regions for the CLIC Drive Beam 485
 
  • R. Apsimon, J. Esberg, A. Latina, D. Schulte, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The optics design of the final turnaround regions for the CLIC drive beam is presented. This includes the extraction region, the turnaround loop and the phase feed forward chicane for correcting errors on the bunch phase. The design specifications of the kicker and septum magnets are provided. Tracking simulations and detailed studies of coherent and incoherent synchrotron radiation have been used to optimise the optics in the turnaround region in order to minimise transverse and longitudinal emittance growth.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME003 Effect of CSR Shielding in the Compact Linear Collider 1337
 
  • J. Esberg, R. Apsimon, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  The Drive Beam complex of the Compact LInear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We here present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO028 Bunch Compressor Design for CLIC Drive Beam 2924
 
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • J. Esberg, D. Schulte
    CERN, Geneva, Switzerland
 
  The drive-beam linac which is required for generation RF power at Compact Linear Collider (CLIC) has to accelerate an electron beam with 8.4 nC per bunch up to 2.4 GeV in almost fully loaded structures. The required beam stability in both transverse and longitudinal directions are of concern for such a high bunch charge. We present different bunch compressor designs for the Drive Beam and compare their performance including the effects beam energy and phase jitters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)