Author: Dehning, B.
Paper Title Page
MOOCB01 Beam-induced Quench Tests of LHC Magnets 52
 
  • M. Sapinski, B. Auchmann, T. Bär, W. Bartmann, M. Bednarek, S. Bozyigit, C. Bracco, R. Bruce, F. Cerutti, V. Chetvertkova, K. Dahlerup-Petersen, B. Dehning, E. Effinger, J. Emery, A. Guerrero, E.B. Holzer, W. Höfle, A. Lechner, A. Priebe, S. Redaelli, B. Salvachua, R. Schmidt, N.V. Shetty, A.P. Siemko, E. Skordis, M. Solfaroli Camillocci, J. Steckert, J.A. Uythoven, D. Valuch, A.P. Verweij, J. Wenninger, D. Wollmann, M. Zerlauth, E.N. del Busto
    CERN, Geneva, Switzerland
 
  At the end of the LHC Run1 a 48-hour quench-test campaign took place to investigate the quench levels of superconducting magnets for loss durations from nanoseconds to tens of seconds. The longitudinal losses produced extended from one meter to hundreds of meters and the number of lost protons varied from 108 to 1013. The results of these and other, previously conducted quench experiments, allow the quench levels of several types of LHC magnets under various loss conditions to be assessed. The quench levels are expected to limit LHC performance in the case of steady-state losses in the interaction regions and also in the case of fast losses initiated by dust particles all around the ring. It is therefore required to accurately adjust beam loss abort thresholds in order to maximize the operation time. A detailed discussion of these quench test results and a proposal for additional tests after the LHC restart is presented.  
slides icon Slides MOOCB01 [2.737 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOOCB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO011 New Tools for K-modulation in the LHC 1024
 
  • M. Kuhn, B. Dehning, V. Kain, R. Tomás, G. Trad
    CERN, Geneva, Switzerland
 
  For many applications, the precise knowledge of the beta function at a given location is essential. Several measurement techniques for optics functions are used in the LHC to provide the most suitable method for a given scenario. A new tool to run k-modulation measurements and analysis is being developed with the aim to be fully automatic and online. It will take constraints of various systems such as tune measurement precision, powering limits of the LHC superconducting circuits and limits of their quench protection systems into account. It will also provide the possibility to sinusoidally modulate the currents of the investigated quadrupoles with a predefined frequency and amplitude to increase the measurement precision further. This paper will review the advantages and limitations of k-modulation measurements in the LHC with and without sinusoidal current modulation. The used algorithms and tools will be presented and estimates on the obtainable beta function measurement precision will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME173 Beam-based Measurements of the CPS Wire Scanner Precision and Accuracy 3674
 
  • G. Sterbini, B. Dehning, S.S. Gilardoni, A. Guerrero
    CERN, Geneva, Switzerland
 
  During 2013 run a systematic campaign of beam-based measurement on the CERN Proton Synchrotron wire scanners has been performed. In this work we report the conditions of the measurements, we describe the results and their interpretation. The observations are compatible with an emittance relative precision and accuracy respectively better than 2 % and 5 % in the vertical plane for nTOF beams. The present limitations of the system are discussed and possible solutions are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME173  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME175 A Beam Gas Vertex Detector for Beam Size Measurement in the LHC 3680
 
  • P. Hopchev, V. Baglin, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, C. Gaspar, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, N.J. Jurado, V. Kain, M. Kuhn, B. Luthi, P. Magagnin, R. Matev, N. Neufeld, J. Panman, M.N. Rihl, V. Salustino Guimaraes, B. Salvant, R. Veness, E. van Herwijnen
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, G.J. Haefeli, T. Nakada, B. Rakotomiaramanana, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, G. Schwering, M. Wlochal, A. von Dratzig
    RWTH, Aachen, Germany
  • R. Matev
    Sofia University St. Kliment Ohridski, Faculty of Physics, Sofia, Bulgaria
 
  The Beam Gas Vertex (BGV) detector is foreseen as a possible non-invasive beam size measurement instrument for the LHC and its luminosity upgrade. This technique is based on the reconstruction of beam gas interaction vertices, where the charged particles produced in inelastic beam gas interactions are measured with high-precision tracking detectors. The design studies and expected performance of the currently developed BGV prototype will be presented with an overview given of the associated vacuum, detector, and readout systems. A brief description will be given of the BGV Monte Carlo simulation application, which is based on the LHCb computing framework (Gaudi) and allows simulation studies to be performed and online event reconstruction algorithms to be developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME175  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)