Author: Clemente, G.
Paper Title Page
THPME005 Optimization of an IH-cavity based High Energy Heavy-ion Linac at GSI 3214
 
  • A. Orzhekhovskaya, G. Clemente, L. Groening, S. Mickat, B. Schlitt
    GSI, Darmstadt, Germany
 
  A new high energy heavy-ion injector (HE-Linac) for the FAIR project was proposed as replacement for the existing post-stripper linac at the GSI UNILAC. Six 108 MHz IH-type drift-tube linac cavities within a total length of about 24 m accelerate the ions (up to U28+) from 1.4 MeV/u up to 11.4 MeV/u. Fast pulsed quadrupole triplet lenses are used for transverse focusing in between the IH cavities. The optimization of the HE linac with respect to the emittance growth reduction is investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME011 First Coupled CH Power Cavity for the FAIR Proton Injector 3232
 
  • R. M. Brodhage, G. Clemente, W. Vinzenz
    GSI, Darmstadt, Germany
  • R. M. Brodhage, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. In 2012, the assembly and tuning of the first power prototype was finished. Until then, the cavity was tested with a preliminary aluminum drift tube structure, which was used for precise frequency and field tuning. In 2013 the final drift tube structure has been welded inside the main tanks and the preparation for copper plating has taken place. This paper will report on the main tuning and commissioning steps towards that novel type of DTL and it will show the latest results measured on a fully operational CH proton cavity shortly before copper plating.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)