Author: Choi, H. J.
Paper Title Page
WEPRO059 Analysis and Design of a New Kirkpatrick-Baez Mirror System for Microbeams 2081
 
  • K.H. Gil, H. J. Choi, J.Y. Huang, M.H. Jung, J.H. Lim
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This research is part of the results of the Basic Science Research Program performed by the support of the NRF of Korea funded by the Korean Ministry of Education (2013R1A1A2012390).
In this research, a new K-B mirror system was developed for focusing a microbeam to 1 μm x 1 μm at the 4B beamline of the Pohang Light Source-II. The new K-B mirror system consists of a pair of assemblage having three mechanisms that adjust the position, pitch, and curvature of each vertically and horizontally focusing mirrors and stages that support both the assemblages to enable translations along two orthogonal axes and rotation on the horizontal plane. Both the pitch- and curvature-adjusting mechanisms were designed as flexural mechanisms driven by their respective single actuators to minimize the movement of the mirror center even when the pitch or the curvature of each mirror was adjusted. The K-B mirror system with these features will be robust against possible disturbances and will help promote easy and simple mirror adjustment. This paper describes the whole design of the new K-B mirror system in detail and the structural analysis results of the pitch- and the curvature-adjusting mechanisms, and reports the operation principle of the curvature-adjusting mechanism.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO021 Results Produced after Measuring PAL-ITF Beam Diagnostic Instruments 2903
 
  • H. J. Choi, M.S. Chae, J.H. Hong, H.-S. Kang, S.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Pohang Accelerator Laboratory (PAL) built a PAL-ITF at the end of 2012 to successfully complete PAL-XFEL in 2015. The PAL-ITF is equipped with various kinds of diagnostic equipment to produce high-quality electron bunches. An ICT and a Turbo-ICT were installed in the PAL-ITF. A Faraday Cup is installed at the end of the linear accelerator. These days, the quantity of electric charge occasionally is measured using a BPM Sum value. This paper focuses on the processes and results of electric charge quantity measurements using ICT, Turbo-ICT, FC and BPM. The PAL-ITF is equipped with Stripline-BPM. It is important to find a way to minimize measurement errors that can appear in the process of installing or measuring the BPM. For this, PAL-ITF separately measured the BPM electrode sensitivity and minimized BPM measurement errors through generally calibrating BPM devices by applying Lambertson's Method. A plan was made to minimize BPM measurement errors through applying the BPM electrical calibration method for BPM devices to be used by the PAL-XFEL. This paper examines the processes for checking the performance of the S-BPM installed in the PAL-ITF and the results of its measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)