Author: Chen, J.-R.
Paper Title Page
MOPME078 Relief of an Electric Field via a Cone Structure 550
 
  • Y.T. Huang, C.K. Chan, C.S. Chen, J.-R. Chen, G.-Y. Hsiung, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  A terminated power cable is typically applied not only for terminated ends but also to connect two or more cables. The electric field inside the insulation layer becomes disturbed when a coaxial cable structure is broken and the electric stress increases near the ground edge. A structure of cone type is a major method to alter the lines of equi- potential and to relieve the electric stress around the ground. The dimensions of the cone depend on the cable structure. In this paper we introduce a way to calculate the displacement of equi-potential lines when a cone is brought into a coaxial cable, RG220, and then determine a suitable angle and length of the cone, which are important factors to withstand tens of kV and even greater. The corresponding high-voltage tests are also presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO013 Design Modifications and Installation of the Injection Girder System in the Taiwan Photon Source 1968
 
  • K.H. Hsu, J.-R. Chen, Y.L. Chu, H.C. Ho, D.-G. Huang, W.Y. Lai, C.J. Lin, Y.-H. Liu, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The prototype of TPS injection girder system was designed and installed in a temporary factory. As the leakage field of the kicker magnet in the prototype was found to be too large according to both simulation and measurement to be acceptable, the lattice was altered to fit the requirements. In this paper, we present the design modifications of the injection girder system due to the new lattice. The DC septum magnet is replaced by a pre-AC septum magnet, of which its adjustable stage must be redesigned. The positions of vacuum components in the injection girder are also altered; we add some new holes in the prototype girder. The prototype of an injection girder system after modification has been installed in the tunnel of Taiwan Photon Source. The accuracy of position of three girders installed, and the stages for the septum or kicker magnet are within 0.25 and 0.08 mm, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME052 The Installation of TPS Booster Vacuum System 2390
 
  • C.M. Cheng, B.Y. Chen, J.-R. Chen, G.-Y. Hsiung, S-N. Hsu, T.Y. Lee, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The booster of Taiwan Photon Source (TPS) is designed for 3GeV full energy injection ramped up from 150MeV. It is a synchrotron accelerator of 496.8m. The major vacuum system is elliptical tube made of 304 stainless steel. The inner cross section is 35*20 mm with 0.7 mm thickness. The elliptical tubes were chemical cleaned and ozonated water cleaned before installation. The bending tube was assembled and aligned into dipole magnet at laboratory. The BPM support and pumping chamber support was aligned with 0.3 mm deviation. The BPM chamber and pumping chamber was assembled firstly. The elliptical tube and bellows was installed to connect BPM, pumping chamber and bending chamber. The cold cathode gauge and TMP was mounted on pumping chamber. The pressure data and residual gas analysis will be described in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME054 Design and Fabrication of the Novel-type Ceramic Chamber 2393
 
  • L.H. Wu, C.K. Chan, J.-R. Chen, G.-Y. Hsiung, S-N. Hsu, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  A ceramic chamber of novel type has been designed and fabricated. The uniformity of its inner thin film of deposited metal is improved to have a thickness error about 1 %. The average straightness error of the chamber (length 550 mm) is developed to be less than 55 μm. To fabricate the ceramic chamber of novel type, we first cleaned and joined the two halves; the metal films were deposited by sputtering. These two halves were next sealed with a glass powder colloid to become a ceramic tube. The rate of outgassing of this colloid is 3.57×10-12 Torr L s−1 cm-2 after baking. The ceramic tube was connected to a stainless-steel flange with the aid of a glass powder colloid and TIG welding. This ceramic test chamber will be installed in the experimental system to analyze the residual gas.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME079 The DC and AC Withstands Test for TPS Booster Injection Kicker 554
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, H.H. Chen, J.-R. Chen, Y.T. Huang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  TPS requires highly precise and stable pulsed magnets for top-up mode operation. One injection and two extraction in vacuum kicker magnets in the booster ring are designed and noticed to minimize driving voltage. The HV insulation for magnet itself and vacuum feedthrough need to be tested. A DC withstand voltage tester MUSASHI 3802 (Model: IP-701G) is used to test the DC breakdown voltage, which the maximum driving voltage is 37 kV. And the AC withstand voltage tester was also test the AC breakdown voltage. Thicker than 10 mm ceramic plate could effectively avoid the breakdown occurred with 37 kV DC charging. Thus HV withstand voltage will be higher in vacuum chamber and the insulation with HV will not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME051 Development of the TPS Vacuum Interlock and Monitor Systems 2387
 
  • Y.C. Yang, B.Y. Chen, J.-R. Chen, Z.W. Chen, J. -Y. Chuang, G.-Y. Hsiung, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
 
  The vacuum interlock and monitor systems of Taiwan Photon Source are designed to maintain the ultra-high vacuum condition and to protect the vacuum devices. The pressure readings of ionization gauges are taken as the judgment logic to control the opening and closing of sector gate valves so as to protect the ultra-high vacuum condition. Monitors of the water-cooling system and the chamber temperature serve to protect vacuum devices from radiation hazards. The preparation, installation and status of the interlock and monitor systems are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME055 Residual Gas in the 14 m-long Aluminium Vacuum System of the Storage Ring of Taiwan Photon Source: toward Ultra-high Vacuum 2396
 
  • T.Y. Lee, C.K. Chan, C.H. Chang, C.-C. Chang, S.W. Chang, Y.P. Chang, B.Y. Chen, J.-R. Chen, Z.W. Chen, C.M. Cheng, Y.T. Cheng, G.-Y. Hsiung, S-N. Hsu, H.P. Hsueh, C.S. Huang, Y.T. Huang, L.H. Wu, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  In the Taiwan Photon Source project, the storage ring includes 24 sectors (each of length 14 m) of an aluminium vacuum chamber system. The design, manufacture, cleaning, welding and assembly of the vacuum components were undertaken by the NSRRC vacuum group. The ultimate objective is to attain a leak-tight, ultra-high vacuum and a vacuum system with a small rate of outgassing. In this work, we used a residual-gas analyzer (RGA) to analyze the variation of residual gas during proceeding toward ultra-high vacuum. This process, which led the pressure down to ~10-11 torr, includes baking, operation of ion pumps, degassing of hot cathode gauges and activation of NEG pumps. When a sufficiently small low pressure is attained, the ion pumps are turned off to test the building up of pressure. The outgassing property and the variation of the residual gas of the aluminium chamber and the ion pumps can be measured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME198 TPS Storage and Booster Ring Cable Tray Installation Status and CIA Design Arrangement 3748
 
  • Y.-H. Liu, J.-R. Chen
    NSRRC, Hsinchu, Taiwan
 
  The TPS infrastructure and the whole subsystems for the accelerator are now approach to finish. The cable trays for booster and storage ring in tunnel are almost finished. The 3 layers cable trays for booster ring are for dipole, quaturpole power supply cable and IC/VA signal cable respectively. The designed for limited space for cooling water below the cable tray and the magnet girder above. The storage ring cable tray also designed for different subsystems, and separate the power and signal layer. The power racks for all subsystem are located in control and instrument area (CIA). The magnet and ID power supply are placed in the 1st floor and the IC, VA, MP and FE control racks are placed in the 2nd floor. The separation between the power and signal cable tray are noticed for the whole path inside tunnel and CIA. Now the subsystem is under installation, although it is hard to cabling but it would not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME198  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME200 Status of the Utility System Construction for the 3 GeV TPS Storage Ring 3751
 
  • J.-C. Chang, W.S. Chan, C.S. Chen, J.-R. Chen, Y.-C. Chung, C.W. Hsu, K.C. Kuo, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  The construction of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) was started in the end of 2009. The utility building for the TPS ring had been completed in the end of 2013. The building use license had been approved in Sep. 2013. The whole construction engineering has been completed. The acceptance test is scheduled on July 2014. Total budget of this construction is about four million dollars. This utility system presented in this paper includes the cooling water, air conditioning, electrical power, and compressed air systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME200  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI109 Auto-alignment Status of the Taiwan Photon Source 4034
 
  • M.H. Wu, J.-R. Chen, P.S.D. Chuang, H.C. Ho, K.H. Hsu, D.-G. Huang, W.Y. Lai, C.-S. Lin, C.J. Lin, H.C. Lin, H.M. Luo, S.Y. Perng, P.L. Sung, C.W. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a new 3-GeV ring under construction at NSRRC in Taiwan. There are hundreds of magnets placed on girders that must be aligned correctly to keep the electronic beam in the desire orbit. Due to the reasons of manpower, set up time, accuracy of adjustment, deformation of the floor, and limited space, an auto-alignment girder control system was designed to meet this requirement. The auto-alignment test was completed with one double-bend cell at NSRRC. The Auto-alignment process will be tested with some sections of magnet girders to confirm the control system and the algorithm in the TPS. The status and test results will be described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)