Author: Chen, H.H.
Paper Title Page
MOPME079 The DC and AC Withstands Test for TPS Booster Injection Kicker 554
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, H.H. Chen, J.-R. Chen, Y.T. Huang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  TPS requires highly precise and stable pulsed magnets for top-up mode operation. One injection and two extraction in vacuum kicker magnets in the booster ring are designed and noticed to minimize driving voltage. The HV insulation for magnet itself and vacuum feedthrough need to be tested. A DC withstand voltage tester MUSASHI 3802 (Model: IP-701G) is used to test the DC breakdown voltage, which the maximum driving voltage is 37 kV. And the AC withstand voltage tester was also test the AC breakdown voltage. Thicker than 10 mm ceramic plate could effectively avoid the breakdown occurred with 37 kV DC charging. Thus HV withstand voltage will be higher in vacuum chamber and the insulation with HV will not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO049 Magnet AC Analysis of a Taiwan Light Source Booster 2977
 
  • H.C. Chen, H.H. Chen, S. Fann, S.J. Huang, A.P. Lee, J.A. Li, C.C. Liang, Y.K. Lin
    NSRRC, Hsinchu, Taiwan
 
  The Response Surface Methodology (RSM), is used to study the optimization process of magnet AC in the booster for Taiwan Light Source (TLS) in National Synchrotron Radiation Research Center (NSRRC). A study model was constructed based on the Artificial Neural Network (ANN) theory. The theoretical model and optimization procedure were both implemented to evaluate the model. The details of the study will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)