Author: Chen, H.B.
Paper Title Page
THPRI076 Laser Triggered RF Breakdown Study Using an S-band Photocathode Gun 3943
 
  • J.H. Shao, W. Gai
    ANL, Argonne, Illinois, USA
  • H.B. Chen, Y.-C. Du, W.-H. Huang, J. Shi, C.-X. Tang, L.X. Yan
    TUB, Beijing, People's Republic of China
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • F.Y. Wang
    SLAC, Menlo Park, California, USA
 
  A laser triggered RF breakdown experiment was carried out with an S-band photocathode gun at Tsinghua University for attempting understanding of the RF breakdown processes. By systematic measurement of the time dependence of the breakdown current at the gun exit and the stored RF energy in the cavity, one might gain insight into the time evolution of RF breakdown physics. A correlation of the stored energy and field emission current has been analysed with an equivalent circuit model. Experimental details and analysis methods are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI077 Electric Field Enhancement Study using an L-band Photocathode Gun 3946
 
  • J.H. Shao, W. Gai
    ANL, Argonne, Illinois, USA
  • H.B. Chen, J. Shi
    TUB, Beijing, People's Republic of China
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • F.Y. Wang, L. Xiao
    SLAC, Menlo Park, California, USA
 
  RF breakdown in high gradient accelerating structures is a fundamental problem that is still needed better understanding. Past studies have indicated that field emission, which is usually represented by electric field enhancement (i.e. β) produced from the Fowler-Nordheim plot, is strongly coupled to the breakdown problem. A controlled surface study using a high gradient L-band RF gun is being carried out. With a flat cathode, the maximum electric field on the surface reached 103 MV/m. And electric field as high as 565 MV/m on the surface was achieved by a pin-shaped cathode. The field enhancement factor was measured at different surface field during the conditioning process. Initial results of the study are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)