Author: Chastel, F.
Paper Title Page
WEIB04 Challenges of the XFEL Cryomodule Integration and Industry Transfer 1929
 
  • F. Chastel, P. Pluvy, H. Rocipon
    ALSYOM, Argebteuil, France
 
  The construction of the European XFEL Accelerator is based on in-kind contributions shared by several institutes throughout Europe and Russia. Within the French contribution, CEA is responsible for the assembly, in a dedicated facility located in Saclay, of the up to 100 cryomodules constituting the Linac. Since 2012, ALSYOM has been selected as the industrial partner for such assembly works. This presentation will detail the organization set up for this partnership and the related challenges of this transfer to Industry.  
slides icon Slides WEIB04 [1.962 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEIB04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI001 Clean Room Integration of the European XFEL Cavity Strings 2474
 
  • S. Berry, O. Napoly, B. Visentin
    CEA/DSM/IRFU, France
  • F. Chastel, A. Clippet, M. Mbeleg, P. Pluvy
    ALSYOM, Argebteuil, France
  • C. Cloué, C. Madec, T. Trublet
    CEA/IRFU, Gif-sur-Yvette, France
 
  The 101 cryomodules of the XFEL cold linac will be integrated at Saclay under the CEA responsability by the industrial operator ALSYOM, at the production rate of cryomodule per week. Each cryomodule includes a string of 8 Niobium superconducting cavities and a BPM-quadripole unit (downstream end). To avoid particle contamination of the RF cavities, the strings are assembled in an ISO4 cleanroom by following strict cleaning and high-vacuum procedures. The major technical challenge of the string integration thus lies in the capacity to realize 25 connections in two weeks while protecting the cavity and coupler RF surfaces and to check their leak-tightness up to 10-10 hPA.l/s. The partial demonstration was made by the CEA team with the first pre-series module XM-3 which achieves a total accelerating voltage of 232 MV preserving the individual performances of cavities. In this paper the status and challenges of the production line is presented, including the quality management, equipment and operator training aspects. The optimisation process toward a faster assembly while preserving or actually decreasing the cavity exposure to contamination sources is also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)