Author: Charifoulline, Z.
Paper Title Page
THPRI093 CSCM: EXPERIMENTAL AND SIMULATION RESULTS 3988
 
  • S. Rowan, B. Auchmann, K. Brodzinski, Z. Charifoulline, R. Denz, V. Roger, I. Romera, R. Schmidt, A.P. Siemko, J. Steckert, H. Thiesen, A.P. Verweij, G.P. Willering, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H. Pfeffer
    Fermilab, Batavia, Illinois, USA
 
  The copper-stabilizer continuity measurement - or CSCM - was devised to obtain a direct and complete qualification of the continuity in the 13 kA bypass circuits of the LHC, especially in the copper-stabilizer of the busbar joints and the bolted connections in the diode-leads. The circuit under test is brought to ~20 K, a voltage is applied to open the diodes, and the low-inductance circuit is powered with a pre-defined series of current profiles. The profiles are designed to successively increase the thermal load on the busbar joints up to a level that corresponds to worst-case operating conditions at nominal energy. In this way, the circuit is tested for thermal runaways in the joints - the very process that could prove catastrophic if it occurred under nominal conditions with the full circuit energy. Surveillance software and a numerical model were devised to carry out the analysis and ensure complete protection of the circuit from over-heating. A type test of the CSCM was successfully carried out in April 2013 on one main dipole and one main quadrupole circuit of the LHC. This paper describes the analysis procedure, the numerical model, and results of this first type test.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI095 Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning 3995
 
  • D. Anderson, M. Audrain, Z. Charifoulline, M. Dragu, K. Fuchsberger, J.C. Garnier, A.A. Gorzawski, M. Koza, K.H. Krol, S. Rowan, K. Stamos, M. Zerlauth
    CERN, Geneva, Switzerland
 
  The LHC magnet powering system is comprised of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as a dependable tracking of test executions it is vital that the executed commissioning steps and applied analysis criteria adequately represent the operational state of each component. The Accelerator Testing (AccTesting) framework in combination with a domain specific analysis language provides the means to quantify and improve the quality of analysis for future campaigns. Dedicated tools were developed to analyse in detail the reasons for failures and success of commissioning steps in past campaigns and to compare the results with newly developed quality metrics. Observed shortcomings and discrepancies are used to propose additional verification and mitigation for future campaigns in an effort to improve the testing quality and hence assure the overall dependability of subsequent operational periods.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)