Author: Belver-Aguilar, C.
Paper Title Page
MOPRO027 Measurements and Laboratory Tests on a Prototype Stripline Kicker for the CLIC Damping Rings 125
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes, H.A. Day
    CERN, Geneva, Switzerland
  • F. Toral
    CIEMAT, Madrid, Spain
 
  The Pre-Damping Rings (PDRs) and Damping Rings (DRs) of CLIC are required to reduce the beam emittances to the small values required for the main linacs. The injection and extraction, from the PDRs and DRs, are performed by kicker systems. To achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. Prototype striplines have been built: tests and measurements of these striplines have started. The goal of these tests is to characterize, without beam, the electromagnetic response of the striplines. The tests have been carried out at CERN. To study the signal transmission through the striplines, the measured S-parameters have been compared with simulations. In addition, measurements of longitudinal beam coupling impedance, using the coaxial wire method, are reported and compared with simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO028 Measurements on Prototype Inductive Adders with Ultra-flat-top Output Pulses for CLIC DR Kickers 128
 
  • J. Holma, M.J. Barnes
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar
    IFIC, Valencia, Spain
 
  The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been recorded with ±0.05 % relative (±1.0 V) stability for 160 ns flat-top duration at 1.823 kV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)