Author: Aryshev, A.S.
Paper Title Page
THPME159 Double Diffraction Radiation Target Interferometry for Micro-train Beam Diagnostics 3635
SUSPSNE073   use link to see paper's listing under its alternate paper code  
 
  • D.A. Shkitov, A. Potylitsyn
    TPU, Tomsk, Russia
  • A.S. Aryshev, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by grant of Russian Ministry of Education and Science program “Nauka” number 2.1799.2011.
Recently our group starts to investigate a feasibility of double diffraction radiation (DR) target interferometry for non-invasive micro-train beam diagnostics at KEK: LUCX facility. Double DR target consists of two metal plates and one of them can be moved relative to another along the beam trajectory. Micro-train beam is a sequence of short electron bunches with sub-ps spacing. As it was shown* double DR target can be used for such a beam diagnostics measuring DR yield versus plates displacement. The obtained tuning curve (interferogram) allows to determine a number of bunches within the micro-train and spacing between them. In order to design a reliable device for this aim we have to take into account different double DR target interferometer plate’s adjustment inaccuracies. These inaccuracies can be as follows: inaccuracies in the mutual adjustment of plates tilt angles to the beam trajectory, outer plate edge shift along the beam trajectory and other. The influence of the bunch form-factor shape is also considered. We investigated double DR target preparation accuracy requirements in order to minimize measurements uncertainties and increase interferometer resolution.
* Skitov D.A. et. al., J. Phys.: Conf. Ser. 517, 012024 (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME159  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME184 Improvement of Beam Imaging Systems through Optics Propagation Simulations 3709
 
  • B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A.S. Aryshev
    KEK, Ibaraki, Japan
  • B. Bolzon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • B. Bolzon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev, K.O. Kruchinin
    JAI, Egham, Surrey, United Kingdom
 
  Optical Transition Radiation (OTR) is emitted when a charged particle crosses the interface between two media with different dielectric properties. It has become a wide-spread method for beam profile measurements. However, there are no tools to simulate the propagation of the OTR electric field through an optical system. Simulations using ZEMAX have been performed in order to quantify optical errors, such as aberrations, diffraction, depth of field and misalignment. This paper focuses on simulations of vertically polarized OTR photons with the aim of understanding what limits the resolution of realistic beam imaging systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME184  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)