Author: Ahmadi, E.
Paper Title Page
MOPRO069 Progress Status of the Iranian Light Source Facility Laboratory 240
 
  • J. Rahighi, E. Ahmadi, H. Ajam, M. Akbari, S. Amiri, J. Dehghani, R. Eghbali, S. Fatehi, M. Fereidani, A. Gholampour, A. Iraji, M. Jafarzadeh, B. Kamkari, S. Kashani, P. Khodadoost, H. Khosroabadi, M. Lamehi, M. Moradi, H. Oveisi, S. Pirani, M. Rahimi, N. Ranjbar, R. Rasoli, M. Razazian, A. Sadeghipanah, F. Saeidi, R. Safian, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, A. Shahveh, Z. Shahveh, A. Shahverdi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • H. Ghasem
    IPM, Tehran, Iran
 
  The Iranian Light Source Facility Project (ILSF) is a 3 GeV third generation light source with a current of 400 mA which will be built on a land of 50 hectares area in the city of Qazvin, located 150 km West of Tehran. ILSF conceptual design report, CDR, was published in October 2012. To have a competitive leading position in the future, 489.6 m storage ring of ILSF is designed to emphasize on small emittance electron beam( 0.93 nm-rad), high photon flux density, brightness, stability and reliability. Moreover, 40% of 489.6 m ring circumference is straight sections (14×8 m+ 14×6 m) which are long enough for the commonly used insertion devices. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, Storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO072 Lattice Design History of the Iranian Light Source Facility Storage Ring 249
 
  • H. Ghasem
    IPM, Tehran, Iran
  • E. Ahmadi, F. Saeidi
    ILSF, Tehran, Iran
 
  Several lattice alternatives have been designed for the 3 GeV storage ring of Iranian Light Source Facility (ILSF). Design of the ILSF storage ring emphasizes an ultra low electron beam emittance, great brightness, stability and reliability which make it competitive in the operation years. In this paper, we give a brief review of the main designed lattice candidates for the ILSF storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO074 Super Bright Lattice for the Iranian Light Source Facility Storage Ring 255
 
  • H. Ghasem
    IPM, Tehran, Iran
  • E. Ahmadi
    ILSF, Tehran, Iran
 
  To have a competitive leading position in the future and to obtain ultra low beam emittance, save energy and minimizing operation cost, we have designed lattice based on the 5 low field dipole magnets per cell for the storage ring of Iranian light Source Facility (ILSF). The designed lattice has the capability of both soft and hard x-ray radiation from central dipoles. In this paper, we give specifications of lattice linear and nonlinear optimization and review properties of the radiated x-ray.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO106 Developing Matlab-based Accelerator Physics Application for the ILSF Commissioning and Operation 3143
 
  • E. Ahmadi, H. Ghasem, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
 
  The ILSF control system is supposed to operate with Epics system. The simultaneous use of Matlab Middle Layer (MML) and Accelerator Toolbox (AT) allow for parallel, high level machine control and accelerator physics application that communicate with control system via Epics via channel access. The MML has been papered for ILSF storage ring. Some high level applications are also tested in ILSF storage ring via MML.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)