

T. NAKAGAWA (RIKEN)

1.Introduction

2.Ion sources for pulsed beam production(physics and technology)

2-1. Electron beam ion source

2-2. Laser ion source

3.Ion sources for DC beam production(physics and technology) 3-1. Electron cyclotron resonance ion source

Heavy ion accelerator facilities in the world

Production rate of RI

IPAC'13, May 12-17, 2013, Shanghai, China

Relative mass separated yield

Production rate of RI

*In the case of ¹³⁸Sn production by an in-flight uranium fission reaction, we obtain only ~5 times the production gain by increasing the energy from 200 MeV/u to 400 MeV/u.

Production rate of Radio isotope

IPAC'13, May 12-17, 2013, Shanghai, China

Relative mass separated yield

¹³⁸Sn

¹⁵⁹Nd

Sn

¹⁴S

²¹¹Fr

1000

Beam energy (MeV/u)

C. Jiang et al, NIM A492(2002)57

¹¹Li

*In the case of ¹³⁸Sn production by an in-flight uranium fission reaction, we obtain only ~5 times the production gain by increasing the energy from 200 MeV/u to 400 MeV/u.

*Construction cost of a new ECRIS that can increase the beam intensity by a factor of five is significantly less than the construction cost of additional accelerators required to increase the energy.

 \star In the past decade, the beam intensity of medium charge state of U ions, which is a suitable charge state for RIBF facility, has been increased by one order of magnitude.

IPAC'13, May 12-17, 2013, Shanghai, China

10²

x5

10¹

10⁰

0

500

Ion sources for Pulsed beam production

2.1 Electron beam ion sources (EBISs)

(I)Physics
(II)BNL-EBIS
(III)Beam instabilities
(IV)New developments

Tandem EBIS The electron string ion source (ESIS)

Electron Beam Ion Source (EBIS)-physics-

The EBIS has very unique feature that the total extracted charge per pulse is almost independent of ion species or charge state. Additionally, the beam pulse width can be controlled by the extraction barrier voltage manipulation, and therefore the both short pulses (~10 μ s) of high current (several mA) are possible. It is suited for single turn synchrotron injection.

 $C^+=3.36\times 10^{11}I_e LE_e$ I_e : electron beam current *L* : trap length E_{e} : electron energy *q=8 q*=16 E_e=8keV Abundance in % q=0 Argon 8 keV 80 q= 40 20 log(j*t) $L_{0}g(j\tau)$ E_e=3keV Abundance in % Argon 3 keV 80 q=0 60 40 20 -2 2 -1 1 log(j*t) Log(jτ) R. Becker RSI 71(2000)816

EBIS for BNL RHIC

Requirements for pre-injector

Ion species	He~U
Beam intensity	He ²⁺ $5x10^{10}$ /pulse Fe ²⁰⁺ $4x10^{9}$ Au ³²⁺ $2.7x10^{9}$
Repetition rate	5Hz
Pulse width	10~40µs
Switching time	1 sec
Output energy	2MeV/amu

Design parameters for EBIS

Electron beam	10A
Magnetic field (solenoid)	5.5T
Trap length	1.5m
Vacuum	<10 ⁻¹⁰ Torr
Total extracted charge/pulse	5x10 ¹¹ (80nC)
Output energy	17keV/u

RHIC-EBIS II

The ion yield vs. electron beam current showed twice the output, compared to the BNL Test EBIS, since this EBIS has twice the trap length of the Test EBIS.

Total charge/pulse of $\sim 9 \times 10^{11}$ was achieved at the electron current of ~ 9 A

A TOF spectrum of the extracted ion beam with and without Au external ion injection

A. Pikin et al, Proc. of INT. SYMP. ON ELECTRON BEAM ION SOURCES AND TRAPS Table 2: Intensities measured after the 73° dipole

	Ions per pulse	Charges per pulse
He 1+	67 x 10 ⁹	6.7 x 10 ¹⁰
Ne 5+	5.5 x 10 ⁹	$2.7 \ge 10^{10}$
Fe 20+	1.7 x 10 ⁹	3.4 x 10 ¹⁰
Au 32+	0.92 x 10 ⁹	2.9 x 10 ¹⁰

E. Beebe et al, HIAT2012

RHIC EBIS performance

FIG. 1. (Color onlin) Schematic of the EBIS preinjector front end.

J. Alessi et al, PAC'11

RHIC EBIS performance

FIG. 1. (Color onlin) Schematic of the EBIS preinjector front end.

Table 1: Preinjector Parameters

Ions	He – U
Q / m	≥1/6
Current	> 1.5 emA
Pulse length	10-40µs (for few-turn injection)
Rep rate	5 Hz
EBIS output energy	17 keV/u
RFQ output energy	300 keV/u
Linac output energy	2 MeV/u
Time to switch species	1 second

Table 3: Parameters for helium, gold and iron ions demonstrated for CD-4.

Parameter	He ⁺¹	Au ⁺³²	Fe ⁺²⁰
q/m	0.25	0.162	0.357
Platform Voltage (kV)	68	104	47.6
RFQ Power (kW)	40	95	20
Linac Power (kW)	75	180	37
Dipole Current (A)	1415	2270	1030
Pulse Length (µs)	20	20	36
Rep. Rate (Hz)	1	1	1
Intensity (10 ⁸) ions/pulse	1250	3.7	4.75
Energy (MeV/u)	2	2	2
Transmission,	75	90*	60*
RFQ input to middle of bend (charge states)	(*=inferre	d, due to	multiple

Instability (EBIS)

Despite the success using an EBIS in the application, it has reported that it has some limitation of the behaviour.

In 1990's, Donets reported the anomalous behaviour that might limit EBIS performance.

One of the explanations is the existence of plasma instabilities. The instabilities associated with the beam current, electron beam and trapped ions were intensively studied. It was observed that the effective ionization rate was reduced and radial ion current was increased with the instabilities. It should affect the stability of the beam.

To further improve the performance. It is important to study the instabilities experimentally, theoretically with using the simulation code.

Next step I (Tandem EBIS)

It can make to double the EBIS intensity using the existing units: electron gun, electron collector, extraction/injection ion optics, and ion injection system.

A. Pikin et al, HIAT2012, p101

Next step I (Tandem EBIS)

Additional SC-solenoid coil

It can make to **double** the EBIS intensity using the existing units: electron gun, electron collector, extraction/injection ion optics, and ion injection system.

The longitudinal energy spread and transverse emittance growth resulting from a fast ion extraction should be minimizing to match the RHIC requirements

A. Pikin et al, HIAT2012, p101

trap and two pre-extraction traps is presented in Fig. 2.

Donets proposed so-called reflex mode of EBIS.

This ion source has specially designed electron gun and electron reflector which allows the multiple use of the electron beam.

The electron string ion source (ESIS) is based on a specially designed electron gun and an electron reflector that allows multiple uses of beam electrons.

At some conditions the electron can be reflected hundred times.

D. Donets et al, EPAC08

Donets proposed so-called reflex mode of EBIS.

This ion source has specially designed electron gun and electron reflector which allows the multiple use of the electron beam.

The electron string ion source (ESIS) is based on a specially designed electron gun and an electron reflector that allows multiple uses of beam electrons.

At some conditions the electron can be reflected hundred times.

Effect of ion-ion collision cooling

Ar¹⁶⁺ 200 eµA Fe²⁴⁺ 150 eµA Beam pulse: 8 μs Injected into JINR synchrotron

D. Donets et al, EPAC08

Ion sources for Pulsed beam production

2.2 Laser ion source (LIS)

(I)Physics (II)CERN LIS (III)DPIS

Source geometry

DPIS in RIKEN

Laser plasma

The main energy transfer from the laser to the plasma is inverse bremsstrahlung for the laser power density up to 10^{13} W/cm².

Inverse bremsstrahlung absorption coefficient

 $K_{ab} = \frac{v(n_{cr})L_h}{c}$

$$v(n_{cr})=4\sqrt{2\pi}Ze^{4}\Lambda_{ei}n_{cr}/3m_{e}(kT_{e})^{2/3}$$

Based on it, for laser ion source design, the laser which has the power density of 10^{10} -several 10^{13} W/cm², wave length >1000nm and pulse with of 1~100ns was used in many laboratories. In that case, the experimental results and theoretical calculation show the absorption efficiency is from 70 to 90%.

Laser plasma

The main energy transfer from the laser to the plasma is inverse bremsstrahlung for the laser power density up to 10^{13} W/cm².

Inverse bremsstrahlung absorption coefficient

 $K_{ab} = \frac{v(n_{cr})L_h}{c}$

$$v(n_{cr}) = 4\sqrt{2\pi}Ze^4\Lambda_{ei}n_{cr}/3m_e(kT_e)^{2/3}$$

Based on it, for laser ion source design, the laser which has the power density of 10^{10} ~several 10^{13} W/cm², wave length >1000nm and pulse with of 1~100ns was used in many laboratories. In that case, the experimental results and theoretical calculation show the absorption efficiency is from 70 to 90%.

Electron temperature strongly dependent on the laser power density

$$T_e \propto \left(\frac{I^2 m_i}{n_{cr} Z}\right)^{1/3}$$

For this reason, average charge state is also depend on the power

(higher power highly charged heavy ions)

$$\tau_{1/2} = 2 \times 10^6 P^{-0.43} L$$

The pulse width (*t*) and beam intensity(*I*) are defined as, $t \propto L, I \propto L^{-3}$, where *L* is the distance from the target to the extraction system.

It is easy to increase the pulse width with increasing the drift distance.

Injected current to the RFQ becomes small, because the intensity is proportional to L^{-3} as shown in the formula described above.

Recombination effect

$$R_{3B} \cong 10^{-26} Z^3 \frac{N_e}{T^{4.5}}$$

$$\tau_{1/2} = 2 \times 10^6 P^{-0.43} L$$

The pulse width (*t*) and beam intensity(*I*) are defined as, $t \propto L, I \propto L^{-3}$, where *L* is the distance from the target to the extraction system.

It is easy to increase the pulse width with increasing the drift distance.

Injected current to the RFQ becomes small, because the intensity is proportional to L^{-3} as shown in the formula described above.

Thus to maximize the highly charged ion beam, R_{3B} should be minimized High temperature and low-density plasma is desirable.

CERN LIS

Parameters of CERN LIS for LHC

TABLE I. Specification parameters of the laser ion source (laser system scheme: master-oscillator/power amplifier).

· · · · /	
Parameter	Value
Total laser energy	≥100 J
useful laser energy	≥80 J
Laser pulse duration	30-50 ns
Diameter of the focal spot	170–250 μm
Laser power density	(0.8-1.2) 10 ¹³ W/cm ²
Laser beam diameter	160 mm
Focal length of the focusing mirror	200-300 cm
Incident angle at the target	<5°
Plasma expansion length	200–260 cm
Total extraction current density	8.8 mA/cm^2
Diameter of the extraction hole	34 mm
Number of Pb ²⁰⁸ particles with $Z = 25 +$	1.4×10^{10}
Ion pulse length	1.5; 3; 6 μs
Emittance of extracted Pb^{208} ion beam ϵ	44 mm mrad
(4 rms at 9.6 keV/u)	
Extraction potential	80 kV
Source repetition rate	1 Hz
Energy spread dE/E	$<\pm 2.5\%$
Number of LIS operation cycles between	2×10^{6}
interventions	

IPAC'13, May 12-17, 2013, Shanghai, China

S. Kondrashev et al, EPAC04

CERN LIS

A 100 J/1 Hz CO2-laser system has been built for the CERN LIS. Stable operation has been demonstrated during a few hours

 Pb^{27+} ion beams (16% of total ion flux) was obtained for laser power density of $3 \cdot 10^{13}$ W/cm²

The ion beam has been extracted at 105 kV in 1 Hz rep-rate without vacuum problems or extraction system breakdowns.

First results from LIS - December 2002

This charge - state distribution, combined with an average current of 0.363 mA over 4 microseconds, 1750 mm from the target, leads to

2.3 x 10^10 Pb27+ ions at a pulselength of 3.6 microseconds

for the standard extraction geometry (aperture 34 mm)

S. Kondrashev et al, EPAC04

The laser ablation plasma has very high density and has initial expanding velocity.

We can transport the intense ion beam under the plasma condition (neutralization) into the first stage accelerator.

The direct plasma injection scheme (DPIS) was proposed.

Direct plasma injection scheme lay-out

Source geometry

DPIS in RIKEN

The laser ablation plasma has very high density and has initial expanding velocity.

We can transport the intense ion beam under the plasma condition (neutralization) into the first stage accelerator.

The direct plasma injection scheme (DPIS) was proposed.

Direct plasma injection scheme lay-out

DPIS in RIKEN

Developments of DPIS

The obtained peak current was already more than 9 mA from a carbon graphite target using a 4 J CO_2 laser in the early stage of the test experiment.

After the test experiments, a new RFQ linac was fabricated to accelerate high intensity heavy ion beam (~100mA).

400 mJ Nd-YAG laser was tested to produce fully stripped carbon beam and the measured result showed that accelerated peak current reached up to 17 mA.

In 2005, Intense C beams (>60mA) were accelerated, when using 4J CO_2 laser. they also obtained 70mA of Al ions with 2.3J commercial Nd-YAG laser.

M. Okamura et al, PAC2005

Developments of DPIS

The obtained peak current was already more than 9 mA from a carbon graphite target using a 4 J CO_2 laser in the early stage of the test experiment.

After the test experiments, a new RFQ linac was fabricated to accelerate high intensity heavy ion beam (~100mA).

400 mJ Nd-YAG laser was tested to produce fully stripped carbon beam and the measured result showed that accelerated peak current reached up to 17 mA.

In 2005, Intense C beams (>60mA) were accelerated, when using 4J CO_2 laser. they also obtained 70mA of Al ions with 2.3J commercial Nd-YAG laser.

M. Okamura et al, PAC2005

Beam intensity and pulse width stability

The pulse width (*t*) and beam intensity(*I*) are defined as, $t \propto L, I \propto L^{-3}$. For this reason, it is easy to increase the pulse width with increasing the drift distance between ion source and RFQ. However the injected current to the RFQ becomes very small, because the intensity is proportional to L^{-3}

Recently, to minimize the reduction of the current, a solenoid magnet was successfully used for focusing the beam.

Next step (Application of DPIS)

Compact carbon ion cancer therapy facility in China

Beam test of DPIS is carried out for the first time in China.

```
The C^{6+} beam (>6mA) is accelerated
```

The RF power of about 195kW is required to produce the peak beam current

Ion sources for DC beam production

3.1 Electron cyclotron resonance ion source (ECRIS)

(I)Physics
(II)SC-ECRISs (VENUS, SECRAL, RIKEN)
(III)What is the limitation of the beam intensity (RF power, magnetic field,.....)

IPAC'13, May 12-17, 2013, Shanghai, China

Time evolution of the beam intensity (ECRIS)

Time evolution of the beam intensity (ECRIS)

IPAC'13, May 12-17, 2013, Shanghai, China

Time evolution of the beam intensity (ECRIS)

IPAC'13, May 12-17, 2013, Shanghai, China

Magnetic field effect- ECR zone-

B_{min} affects ECR zone size and field gradient

Energy transfer from microwave to electron at ECR zone

Microwave absorption (ECR zone effect)

Y. Kawai et al, Phys. Letter A371(2007)307

$$W_{power} = \left(\frac{\pi n e^2 E^2}{m \omega \left(\frac{dB}{dZ}\right)}\right) S_{ecr}$$

Magnetic field effect- ECR zone-

Magnetic field effect- ECR zone-

IPAC'13, May 12-17, 2013, Shanghai, China

Frequency effect

Frequency effect

Xenon currents (eµA)

Frequency effect

Frequency effect (theoretical calculation)

High performance SC-ECRIS I –VENUS 28GHz-

 $\begin{array}{c} \mbox{Re-commissioning} \\ \mbox{VENUS (18+28GHz)2010} \\ \mbox{Xe}^{26+} & 480 \mbox{ e}\mu A \\ \mbox{Xe}^{27+} & 411 \mbox{ e}\mu A \\ \mbox{Xe}^{30+} & 211 \mbox{ e}\mu A \\ \mbox{Xe}^{32+} & 108 \mbox{ e}\mu A \\ \mbox{Xe}^{35+} & 38 \mbox{ e}\mu A \end{array}$

D. Leitner , et al, Proc. Int. Workshop on ECR ion sources, 2010, Grenoble, France,p11

Tuning Parameters	
28 +18 Ghz	5-6 kW
Bmin	.56 T
Bmin 18 GHz	87.5%
Bmin 28 GHz	56 %
Heat load into the cryostat	1.7 W

VENUS was the first high magnetic field SC-ECR ion source developed for operating at 28 GHz. A number of modifications were carried out during its development, for example, the special cramping technique of the hexapole magnet to increase the radial magnetic field. The modifications of the VENUS were then incorporated into the design of new SC-ECR ion sources.

High performance SC-ECRIS I –VENUS 28GHz-

D. Leitner , et al, Proc. Int. Workshop on ECR ion sources, 2010, Grenoble, France,p11

Tuning Parameters	
28 +18 Ghz	5-6 kW
Bmin	.56 T
Bmin 18 GHz	87.5%
Bmin 28 GHz	56 %
Heat load into the cryostat	1.7 W

(required beam intensity-FRIB,RISP)

VENUS was the first high magnetic field SC-ECR ion source developed for operating at 28 GHz. A number of modifications were carried out during its development, for example, the special cramping technique of the hexapole magnet to increase the radial magnetic field. The modifications of the VENUS were then incorporated into the design of new SC-ECR ion sources.

High performance SC-ECRIS II -SECRAL 24GHz-

	H. W. Zhao et al, Proc. Int. Workshop on ECR ion sources, 2010, Grenoble, France,p1				
SEC	CRAL	(18(+14.5)GHz)	SECRAL (24GHz)		
RF power (kW) <3.2		RF power (kW) 3~5			
129X	Ke ²⁰⁺	505eµA			
¹²⁹ X	Ke ²⁷⁺	306 eµA	129Xe ²⁷⁺	455 eµA	
129 X	Ke^{30+}	101 eµA	129Xe ³⁰⁺	152 eµA	
129 X	Ke^{31+}	68 eµA	129Xe ³¹⁺	85 eµA	
¹²⁹ X	Ke^{35+}	16 eµA	129Xe35+	60 eµA	
¹²⁹	Ke^{38+}	6.6 eµA	$^{129}Xe^{38+}$	17 eµA	
¹²⁹ X	Ke^{42+}	1.5 eµA	129Xe42+	3 eµA	
¹²⁹ X	Ke ⁴³⁺	1 eµA			

SECRAL is a compact SC-ECR ion source designed to operate at microwave frequencies of 18–28 GHz. The unique feature of the SECRAL source is its unconventional magnetic structure, in which superconducting solenoid coils are placed inside the superconducting sextupole. One of the advantages of this structure is that the magnet assembly can be compact in size as compared to similar high magnetic field ECR sources with conventional magnetic structures.

High performance SC-ECRIS II -SECRAL 24GHz-

High performance SC-ECRIS III- RIKEN 28GHz-

T. Nakagawa et al, Rev. Sci. Instrum.81 (2010) 02A320.

"Flat B_{min}" G. D. Alton and D. N. Smithe, Rev. Sci. Instrum. 65 (1994)775

High performance SC-ECRIS III- RIKEN 28GHz-

"Flat B_{min}" G. D. Alton and D. N. Smithe, Rev. Sci. Instrum. 65 (1994)775

Emittance

Emittance

Limitation of the beam intensity increase I

RF power vs. gas pressure (Fokker-Planck eq.)

B. Cluggish et al, NIM A 631(2011)111

Limitation of the beam intensity increase I

B. Cluggish et al, NIM A 631(2011)111

Limitation of the beam intensity increase I

The effect of RF power on the plasma parameters (electron density, temperature and current) and high RF-power instability were demonstrated using FAR-TECH's generalized ECRIS model (GEM)].

These showed that the threshold of the RF power for the instability increased with an increase in the gas pressure. The origin of the instability was the pitchangle scattering of the electrons by the ECR heating process.

Experimental results (RF power dependence)

CAPRICE 14GHz D. Hitz et al, RSI 71(2000)839 500 120 Ar¹¹⁴ Ar⁸⁺ (eµA) (eµA) 100 400 80 300 60 200 40 - 100 20 RF Power (W) - 0 01 400 1400 0 200 600 800 1000 1200 CAPRICE ~0.5L Limitation >1~2kW/L

Experimental results (RF power dependence)

Despite this important information, we have few experimental results for beam intensity saturation at present.

The beam intensity of high-performance SC-ECR ion sources that have a larger plasma chamber volume increases linearly and is not saturated at high power.

To clarify this phenomenon, we need to carry out further investigation under various conditions.

Effect of magnetic field

Beam intensity decreases with decreasing the magnetic field gradient Beam intensity becomes unstable

To clarify this phenomenon, we need to carry out further investigation under various conditions

Beam instability

Spectrum analyzer

The beam intensity was strongly oscillated regularly.

The frequency was several 10 kHz~few 100kHz

The peaks were shifted by changing the RF power and gas pressure.

The amplitude increases with decreasing the gas pressure or increasing the RF power (plasma instabilities?)

Beam stability is very important factor for accelerator

36GHz ECRIS

Require	ed magnetic field strength
B _{inj}	~ 5T
B _r	~2.7T
B _{ext}	~2.7T
B _{min}	0.8~1.2T

Example of RIKEN 28GHz ECRIS 28GHz 36GHz

36GHz ECRIS

36GHz ECRIS

X-ray heat load

