

Peter Kuske, Helmholtz-Zentrum Berlin, Germany

IPAC'13, Shanghai, China

- I. Theoretical Predictions
 - I.1 Vlasov-Fokker-Planck Equation
 - **I.2** Instability Driven by Resistive Impedance
 - I.2 Instability Driven by Broad-Band-Resonator
 - I.3 CSR-Driven Instability
- II. Experimental Observations Comparison of Threshold Currents:
 - II.1 MLS
 - **II.2** Similarity Between Resistive and CSR-wake
 - **II.3 Threshold Determination**
 - II.4 BESSY II

III. Summary

N>10⁹ electrons per bunch \rightarrow smooth distribution in phase space \rightarrow distribution function:

$f(q, p, \tau)$	$p = -\Delta E / \sigma_E$	
	$ au = \omega_{\rm s} t$	

 $q = z / \sigma_z$

Numerical solution based on

II.1

 M. Venturini, et al., Phys. Rev. ST-AB 8, 014202 (2005) Other numerical solutions: R.L. Warnock, J.A. Ellison, SLAC-PUB-8404, March 2000 S. Novokhatski, EPAC 2000 and SLAC-PUB-11251, May 2005

original VFP-equation:

11.1

$$\frac{\partial f}{\partial \tau} + p \frac{\partial f}{\partial q} - \left[q + F_c(q,\tau,f)\right] \frac{\partial f}{\partial p} = \frac{2}{\omega_s t_l} \frac{\partial}{\partial p} \left(pf + \frac{\partial f}{\partial p}\right)$$

Ansatz – "wave function" approach: Distribution function, *f*, expressed as product of amplitude function, *g*: $f = g \cdot g$

$$\frac{\partial g}{\partial \tau} + p \frac{\partial g}{\partial q} - \left[q + F_c(q,\tau,g^2) \right] \frac{\partial g}{\partial p} = \frac{2}{\omega_s t_l} \left(\frac{g}{2} + p \frac{\partial g}{\partial p} + \frac{1}{g} \left(\frac{\partial g}{\partial p} \right)^2 + \frac{\partial^2 g}{\partial p^2} \right)$$

 $f \ge 0$ and solutions numerically more stable

Details on the simulations in my ICAP '12 contribution

1.1

Simulations for 6 – 10 damping times, step size $\Delta = \sigma/20 \dots \sigma/10$, time step ~ $2\pi/1024$. Over last 64 periods the line density is stored 64 times per period for analysis: FFT gives CSR-spectrum, and integrated spectral power is proportional to instantaneous CSR signal. FFT of this signal corresponds to observed signal.

Parameter	BESSY II	MLS
Energy, E ₀ /MeV	1700	629
Bending radius, ρ/m	4.35	1.528
Momentum compaction, α	7.3 10-4	1.3 10-4
Cavity voltage, V _{rf} /kV	1400	330
Accelerating frequency, ω_{rf}/MHz	2π 500	2π 500
Revolution time, T ₀ /ns	800	160
Natural energy spread, σ_E	7.0 10-4	4.36 10-4
Zero current bunch length, $\sigma_{0/}$ ps	10.53	1.549
Longitudinal damping time, τ_l/ms	8.0	11.1
Synchrotron frequency, ω _s /kHz	2π 7.7	2π 5.82
Height of the dipole chamber, 2h/cm	3.5	4.2

1.2

Weak instability theory by K. Oide, Part. Accel. **51**, 43 (1995) - black solid line Numerical results for the Diamond Light Source (DLS) and BESSY II

 $I_{threshold}(\sigma_0 = const) \propto \sqrt{dV_{rf}} / dt$

K. Oide, K. Yokoya, "Longitudinal Single-Bunch Instability in Electron Storage Rings", KEK Preprint 90-10, April 1990

K.L.F. Bane, et al., "Comparison of Simulation Codes for Microwave Instability in Bunched Beams", IPAC'10, Kyoto, Japan and references there in

Results for BBR-Wake – BESSY II

1.3

 $2\pi \cdot 27 \text{ GHz} \cdot \sigma_0 \sim 1.8$

J. B. Murphy, et al., Part. Acc. 1997, Vol. 57, pp 9-64

Shielded CSR-Wake – BESSY II

Shielded CSR-Wake – BESSY II

Shielded CSR-Wake – BESSY II

Solid black line: K.L. Bane, et al., Phys. Rev. ST-AB 13, 104402 (2010)

CSR-Threshold Currents for the MLS

II.1

Solid black line: K.L. Bane, et al., Phys. Rev. ST-AB **13**, 104402 (2010)

MLS: Vrf=330kV, α =1.3 10⁻⁴, σ_0 =1.55ps

Solid black line: K.L. Bane, et al., Phys. Rev. ST-AB 13, 104402 (2010)

Solid black line: K.L. Bane, et al., Phys. Rev. ST-AB 13, 104402 (2010)

Threshold Determination MLS – Experimental Result

Figure 1: Temporal fluctuation of the THz power as a function of the single bunch current plotted in the frequency domain. The measurement was performed using an InSb hot electron bolometer at a the storage ring parameters $\alpha_0 = 1.3 \cdot 10^{-4}$ and V = 330 kV.

CSR - Theoretical Threshold Determination

24

Many modes visible in the Fourier transformed CSR – Equilibrium fluctuations due to finite number of particle – Schottky noise effect, longitudinal beam diagnostics

In fair agreement with predictions - bunch lengthening explains shift

F_{inst}/F_{syn} ~ 3.1

instability mode number

•Predictions using the shielded CSR-wake are in surprisingly good agreement with measurements at BESSY II and the MLS.

Ш.

Summary

•The observed resonance-like features show the importance of the vertical gap of the dipole vacuum chamber.

 Simulations demonstrate the weak nature of the CSR driven instability - also in the region of very short bunches where shielding is less important.

•Below the instability threshold multi-particle-tracking in better agreement with observations than "noise free" VFP-solutions.

•Equilibrium fluctuations due to finite number of particle and very sensitive THZ-detectors useful for longitudinal bunch diagnostics.

•Experimental determination and scaling of threshold currents requires attention – region of weak instability, low mode numbers.

•Results for very high RF-gradients (higher harmonic, double RF-system) have shown not quite the expected increase of instability thresholds.

•The support of Karsten Holldack, Jens Kuszynski, Fjodor Falkenstern and Dennis Engel is acknowledged.